
Theoretical Computer Science 813 (2020) 70–99
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Combining linear logic and size types for implicit complexity

Patrick Baillot, Alexis Ghyselen ∗

Univ Lyon, CNRS, ENS de Lyon, Universite Claude-Bernard Lyon 1, LIP F-69342, Lyon Cedex 07, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 October 2018
Received in revised form 12 September
2019
Accepted 19 September 2019
Available online 25 September 2019

Keywords:
Implicit computational complexity
λ-calculus
Linear logic
Type systems
Polynomial time complexity
Size types

Several type systems have been proposed to statically control the time complexity
of lambda-calculus programs and characterize complexity classes such as FPTIME or
FEXPTIME. A first line of research stems from linear logic and restricted versions of its
!-modality controlling duplication. An instance of this is light linear logic for polynomial
time computation [5]. A second approach relies on the idea of tracking the size increase
between input and output, and together with a restricted recursion scheme, to deduce time
complexity bounds. This second approach is illustrated for instance by non-size-increasing
types [8]. However, both approaches suffer from limitations. The first one, that of linear
logic, has a limited intensional expressivity, that is to say some natural polynomial time
programs are not typable. As to the second approach it is essentially linear, more precisely
it does not allow for a non-linear use of functional arguments. In the present work we
incorporate both approaches into a common type system, in order to overcome their
respective constraints. The source language we consider is a lambda-calculus with data-
types and iteration, that is to say a variant of Gödel’s system T. Our goal is to design a
system for this language allowing both to handle non-linear functional arguments and to
keep a good intensional expressivity. We illustrate our methodology by choosing the system
of elementary linear logic (ELL) and combining it with a system of linear size types. We
discuss the expressivity of this new type system, called sEAL, and prove that it gives a
characterization of the complexity classes FPTIME and 2k-FEXPTIME, for k ≥ 0.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Controlling the time complexity of programs is a crucial aspect of program development. Complexity analysis can be
performed on the overall final program and some automatic techniques have been devised for this purpose. However, if
the program does not meet our expected complexity bound it might not be easy to track which subprograms are respon-
sible for the poor performance and how they should be rewritten in order to improve the global time bound. Can one
instead investigate some methodologies to program while staying in a given complexity class? Can one carry such program
construction without having to deal with explicit annotations for time bounds? These are some questions that have been
explored by implicit computational complexity, a line of research which defines calculi and logical systems corresponding to
various complexity classes, such as FP, FEXPTIME, FLOGSPACE . . .

* Corresponding author.
E-mail address: alexis.ghyselen@ens-lyon.fr (A. Ghyselen).
https://doi.org/10.1016/j.tcs.2019.09.032
0304-3975/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2019.09.032
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:alexis.ghyselen@ens-lyon.fr
https://doi.org/10.1016/j.tcs.2019.09.032
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2019.09.032&domain=pdf

P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99 71
State of the art. A first success in implicit complexity was the recursion theoretic characterization of FP [1]. This work
on safe recursion leads to languages for polynomial time [2], for oracle functionals or for probabilistic computation [3,4].
Among the other different approaches of implicit complexity one can mention two important threads of work. The first
one is issued from linear logic, which provides a decomposition of intuitionistic logic with a modality, !, accounting for
duplication. By designing variants of linear logic with weak versions of the ! modality one obtains systems corresponding to
different complexity classes, like light linear logic (LLL) for the class FP [5] and elementary linear logic (ELL) for the classes
k-FEXPTIME, for k ≥ 0. [5–7]. These logical systems can be seen as type systems for some variants of lambda-calculi. A key
feature of these systems, and the main ingredient for proving their complexity properties, is that they induce a stratification
of the typed program into levels. We will thus refer to them as level-based systems. Their advantage is that they deal with
a higher-order language, and that they are also compatible with polymorphism. Unfortunately from a programming point
of view they have a critical drawback: only few and very specific programs are actually typable, because the restrictions
imposed to recursion by typing are in fact very strong. A second thread of work relies on the idea of tracking the size
increase between the input and the output of a program. This approach is well illustrated by Hofmann’s Non-size-increasing
(NSI) type system [8]: here the types carry information about the input/output size difference, and the recursion is restricted
in such a way that typed programs admit polynomial time complexity. An important advantage with respect to LLL is that
the system is algorithmically more expressive, that is to say that far more programs are typable. This has triggered a fertile
research line on type-based complexity analysis using ideas of amortized cost analysis [9–11]. Some aspects of higher-order
have been addressed [12] but note that this approach deals with complexity analysis and not with the characterization
of complexity classes. In particular it does not suggest disciplines to program within a given complexity class. A similar
idea is also explored by the line of work on quasi-interpretations [13,14], with a slightly different angle: here the kind
of dependence between input and output size can be more general but the analysis is more of a semantic nature and in
particular no type system is provided to derive quasi-interpretations. The type system d�T of [15,16] can be thought of as
playing this role of describing the dependence between input and output size, and it allows us to derive time complexity
bounds, even though these are not limited to polynomial bounds. Altogether we will refer to these approaches as size-based
systems. However, they also have a limitation: characterizations of complexity classes have not been obtained for full-fledged
higher-order languages, but only for linear higher-order languages, that is to say languages in which functional arguments
have to be used at most once (as in [8,14]).

Problematic and methodology. So on the one hand level-based systems manage higher-order but have a poor expressivity,
and on the other hand sized-based systems have a good expressivity but do not characterize complexity classes within a
general higher-order language... On both sides some attempts have been made to repair these shortcomings but only with
limited success: in [17] for instance LLL is extended to a language with recursive definitions, but the main expressivity
problem remains; in [14] quasi-interpretations are defined for a higher-order language, but with a linearity condition on
functional arguments. The goal of the present work is precisely to improve this situation by reconciling the level-based
and the size-based approaches. From a practical point of view we want to design a system which would bring together
the advantages of the two approaches. From a fundamental point of view we want to understand how the levels and the
input/output size dependencies are correlated, and for instance if one of these two characteristics subsumes the other one.

One way to bridge these two approaches could be to start with a level-based system such as LLL, and try to extend it
with more typing rules so as to integrate in it some size-based features. However, a technical difficulty for that is that the
complexity bounds for LLL and variants of this system are usually obtained by following specific term reduction strategies
such as the level-by-level strategy. Enriching the system while keeping the validity of such reduction strategies turns out
to be very intricate. For instance this has been done in [17] for dealing with recursive definitions with pattern-matching,
but at the price of technical and cumbersome reasonings on the reduction sequences. Our methodology to overcome this
difficulty in the present work will be to choose a variant of linear logic for which we can prove the complexity bound by
using a measure which decreases for any reduction step. So in this case there is no need for specific reduction strategy,
and the system is more robust to extensions. For that purpose we use elementary linear logic (ELL), and more precisely the
elementary lambda-calculus studied in [18].

Our language. Let us recall that ELL is essentially obtained from linear logic by dropping the two axioms !A � A and
!A �!!A for the ! functor (the co-unit and co-multiplication of the comonad). Basically, if we consider the family of types
W �!iW (where W is a type for binary words), the larger the integer i, the more computational power we get... This
results in a system that can characterize the classes k-FEXPTIME, for k ≥ 0 [6]. The paper [18] gives a reformulation of the
principles of ELL in an extended lambda-calculus with constructions for !. It also incorporates other features (references
and multithreading) which we will not be interested in here. Our idea will be to enrich the elementary lambda-calculus
by a kind of bootstrapping, consisting in adding more terms to the “basic” type W � W. For instance, we can think of
giving to this type enough terms for representing all polynomial time functions. The way we implement this idea is by
using a second language. We believe that several equivalent choices could be made for this second language, and here we
adopt for simplicity a variant of the language d�T from [16], a descendant of previous work on linear dependent types [19].
This language is a linear version of system T, that is to say a lambda-calculus with recursion, with types annotated with
size expressions. Note that our notion of linearity is more restrictive than some other works on linear system T [20], in
particular it is strictly less expressive than non-linear system T. Actually, the type system of our language can be thought of

72 P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99
as a linear cousin of sized types [21,22] and we call it s�T. So on the whole our global language can be viewed as a kind
of two-layer system, the lower one used for tuning first-order intensional expressivity, and the upper one for dealing with
higher-order computation and non-linear use of functional arguments. We will call it sEAL, for sized Elementary affine logic
typed λ-calculus.

This article is an extended and improved version of a previous conference paper [23]. Besides giving more intuitions and
detailed explanations, the main novelties with respect to the conference article are the following ones:

• full proofs of the results (some lengthy or technical parts are left in an appendix),
• the generalization of the results on the sEAL type system of [23] to its extension with polymorphism,
• some concrete examples of terms typable in sEAL solving non-trivial problems (S AT , Q B Fk, SU B S E T SU M , see

Section 4.2).

Roadmap. We will first define the language s�T of sized linear types and investigate its properties (Section 2). Then we
will recall the elementary lambda-calculus, define our enriched calculus sEAL and study the reduction properties of this
calculus (Section 3). We will then give some examples in sEAL (Section 4). After that we will establish the complexity
results (Section 5).

2. Presentation of s�T and control of the reduction procedure

We present s�T (for sized linear system T) which is a linear λ-calculus with constructors for base types and a constructor
for high-order primitive recursion. Types are enriched with a polynomial index describing the size of the value represented
by a term, and this index imposes a restriction on recursions. With this, we are able to derive a weight on terms in order
to control the number of reduction steps.

2.1. Syntax of s�T and type system

The set of terms and values of s�T are defined by the following grammars:

t, u ::= x | λx.t | t u | t ⊗ u | let x ⊗ y = t in u | zero | succ(t) | ifn(t, u)

| itern(V , t) | ε | si(t) | ifw(t0, t1, u) | iterw(V 0, V 1, t) | tt | ff | if(t, u)

V , W ::= x | λx.t | V ⊗ W | zero | succ(V) | ifn(V , W) | itern(V , W) | ε
| si(V) | ifw(V 0, V 1, W) | iterw(V 0, V 1, W) | tt | ff | if(V , W)

with i ∈ {0, 1}.
We define free variables and free occurrences as usual, and we work up to α-renaming. Here, we choose the alphabet

{0, 1} for simplification, but we could have taken any finite alphabet � and in this case, the constructors ifw and iterw
would need a term for each letter.

The definitions of the constructors will be more explicit with their reduction rules and their types. For intuition, the con-
structor ifn(t, t′) defines a function on integers that does a pattern matching on its input, and the constructor itern(V , t)
is such that itern(V , t) n →∗ V n t , if n is the coding of the integer n, that is succn(zero).

Definition 1 (Substitution). For an object t with a notion of free variable and substitution we write t[t′/x] the term t in
which free occurrences of x have been replaced by t′ .

Base reductions in s�T are given by the rules described in Fig. 1. Note that in the iterw rule, the order in which we
apply the iterated functions is the reverse of the one for iterators we see usually. In particular, it does not correspond to
the reduction defined in [16]. Those base reductions can be applied in contexts C defined by the following grammar:

C := [] | C t | V C | C ⊗ t | t ⊗ C | let x ⊗ y = C in t | succ(C) | ifn(C, t)

| ifn(V , C) | itern(V , C) | si(C) | ifw(C, t, u) | ifw(t, C, u) | ifw(V , W , C)

| iterw(V 0, V 1, C) | if(C, t) | if(t, C).

We introduce the system of linear types with sizes. First, base types are given by the following grammar:

U := WI | NI | B I, J , · · · := a | n ∈ N∗ | I + J | I · J

N∗ is the set of non-zero integers. I represents an index and a represents an index variable. We define for indexes
the notions of occurrences of a variable in the usual way, and we work up to renaming of variables. We also define the

P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99 73
if(V , W) tt → V (λx.t) V → t[V /x]
if(V , W) ff → W let x ⊗ y = V ⊗ W in t → t[V /x][W /y]

ifn(V , W) zero → W ifn(V , V ′) succ(W) → V W
itern(V , W) zero → W itern(V , V ′) succ(W) → itern(V , V V ′) W
ifw(V 0, V 1, W) ε → W ifw(V 0, V 1, V ′) si(W) → V i W

iterw(V 0, V 1, W) ε → W iterw(V 0, V 1, V ′) si(W) → iterw(V 0, V 1, V i V ′) W

Fig. 1. Base rules for s�T.

B � B
I ≤ J

NI � N J

I ≤ J

WI � WI

E � D D ′ � E ′

D � D ′ � E � E ′
D � E D ′ � E ′

D ⊗ D ′ � E ⊗ E ′

Fig. 2. Subtyping Rules.

substitution of a variable in an index in the usual way. Then, we can generalize substitution to types, for example NI [J/a] =
NI[J/a] . The intended meaning is that closed values of type NI (resp. WI) will be integers (resp. words) of size (resp. length)
at most I .

Definition 2 (Order on Indexes). For two indexes I and J , we say that I ≤ J if for any valuation φ mapping all the variables
of I and J to non-zero integers, we have Iφ ≤ Jφ . Iφ is I where all variables have been replaced by their value in φ, thus Iφ
is a non-zero integer. We also consider that if I ≤ J and J ≤ I then I = J (i.e. we take the quotient set for the equivalence
relation). Remark that by definition of indexes, we always have 1 ≤ I .

For two indexes I and J , we say that I < J if for any valuation φ mapping all the variables of I and J to non-zero
integers, we have Iφ < Jφ . This is not equivalent to I ≤ J and I 	= J , as we can see with a ≤ a · b.

For example, we have a + 1 ≤ 2 · a, a + b · a = (b + 1) · a and a + 1 < a + b + c. Here we only consider polynomial indexes.
This is a severe restriction w.r.t. linear dependent types, used for example in [16,24], in which indexes can use any set
of functions described by some rewrite rules. But in the present setting this is sufficient because we only want s�T to
characterize polynomial time computation.

Definition 3. Types are given by the grammar:

D, E, F := U | D � E | D ⊗ E.

The subtyping order � on those types is described in Fig. 2. This definition allows for example the subtyping Na+1 �
W2a � Na � W3a , meaning that a function taking an integer of size smaller than a + 1 and returning a word of size at most
2a can also be seen as a function taking an integer of size smaller than a and returning a word of size at most 3a.

Definition 4 (Variable Contexts). Variables contexts are denoted �, . . . , with the shape � = x1 : D1, . . . , xn : Dn . We say that
� � �′ when � and �′ have exactly the same variables, and for x : D in � and x : D ′ in �′ we have D � D ′ . Ground
variables contexts, denoted d�, are variables contexts in which all types are base types. We write � = �′, d� to denote the
decomposition of � into a ground variable context d� and a variable context �′ in which types are non-base types. This
allows us to decompose a context into his duplicable variables d� and the non-duplicable ones. For a variable context
without base type, we denote � = �1, �2 when � is the concatenation of �1 and �2, and �1 and �2 do not have any
common variables.

We denote proofs as π � �
 t : D and we define an index ω(π) called the weight for such a proof. The idea is that the
weight will be an upper-bound for the number of reduction steps of t . Note that since ω(π) is an index, this bound can
depend on some index variables. The rules for those proofs are described by Fig. 3. Here are some remarks:

• Observe that this system enforces a linear usage of variables of non-base types, this can be seen for instance in binary
rules, such as application, where non-base variables (those in �, �′) do not occur both in t and u.

• In the rule for itern and iterw described in Fig. 3, the index variable a must be a fresh variable. Then
d�
 V : D � D[a + 1/a] means intuitively that for any index J , we have d�
 V : D[J/a]� D[J + 1/a]. This will
be formalized in Lemma 2. Also, we need some monotonicity with respect to a (expressed here by the condition
E � E[a + 1/a]), as it is essential for subtyping (see Lemma 5). Note that in this definition, D is not necessarily
monotonous, but it must be a subtype of a monotonous type E . This gives us more freedom on the type D than directly
asking for monotonicity. Finally, linearity in this rule is expressed by the impossibility to use higher-order variables in
the iterated function, contrary to other notions of linearity for system T [20].

74 P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99
D � E
π�

�, x : D
 x : E
ω(π) = 1

σ � �, x : D
 t : E
π�

�
 λx.t : D � E
ω(π) = 1 + ω(σ)

σ � �,d�
 t : E � D τ � �′,d�
 u : E
π�

�,�′,d�
 t u : D
ω(π) = ω(σ) + ω(τ)

σ � �,d�
 t : D τ � �′,d�
 u : E
π�

�,�′,d�
 t ⊗ u : D ⊗ E
ω(π) = ω(σ) + ω(τ) + 1

σ � �,d�, x : D, y : E
 u : F τ � �′,d�
 t : D ⊗ E
π�

�,�′,d�
 let x ⊗ y = t in u : F
ω(π) = ω(σ) + ω(τ)

π�
�
 zero : NI ω(π) = 0

J + 1 ≤ I σ � �
 t : N J

π�
�
 succ(t) : NI

ω(π) = ω(σ)

σ � �,d�
 t : NI � D τ � �′,d�
 u : D
π�

�,�′,d�
 ifn(t, u) : NI � D
ω(π) = ω(σ) + ω(τ) + 1

D � E E[I/a] � F

σ � d�
 V : D � D[a + 1/a]
E � E[a + 1/a]

τ � �,d�
 t : D[1/a]
π�

�,d�
 itern(V , t) : NI � F

ω(π) = ω(τ) + I · (ω(σ) + 1)[I/a]

π�
�
 ε : WI ω(π) = 0

J + 1 ≤ I σ � �
 t : W J

π�
�
 si(t) : WI

ω(π) = ω(σ)

∀i, σi � �i ,d�
 ti : WI � D τ � �′,d�
 u : D
π�

�1,�2,�′,d�
 ifw(t1, t2, u) : WI � D
ω(π) = ω(σ1) + ω(σ2) + ω(τ) + 1

D � E E[I/a] � F

∀i, σi � d�
 V i : D � D[a + 1/a]
E � E[a + 1/a]

τ � �,d�
 t : D[1/a]
π�

�,d�
 iterw(V 0, V 1, t) : WI � F

ω(π) = ω(τ) + I · (ω(σ1) + ω(σ2) + 1)[I/a]

π�
�
 tt : B ω(π) = 0

π�
�
 ff : B ω(π) = 0

σ � �,d�
 t : D τ � �′,d�
 u : D
π�

�,�′,d�
 if(t, u) : B � D
ω(π) = ω(σ) + ω(τ) + 1

Fig. 3. Type system for s�T.

2.2. Examples in s�T

For the sake of conciseness, we may write from now on λx, y, z.t instead of λx.λy.λz.t .

Other iterators. Using a function reversing a word rev, that one could construct easily, we can define an iterator on words
doing operations in the usual order. We call this iterator Riterw. Formally it is defined by:

Riterw(V 0, V 1, t) := λw.iterw(V 0, V 1, t) (rev w).

We have Riterw(V 0, V 1, W) w0 w1 . . . wn →∗ V w0 (V w1 (· · · (V wn W) · · ·)).
We also show that for integers we can construct an iterator rec(V , t) with:

rec(V , t) n →∗ V n − 1 (V n − 2 (. . . (V zero t) . . .))

and such that the following rule is derivable:

D � E E[I/a] � F

d�
 V : D � Na � D[a + 1/a]
E � E[a + 1/a]

�,d�
 t : D[1/a]
I
�,d�
 rec(V , t) : N � F

P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99 75
We first give a term that takes a pair with an object x of type D and an integer n and returns the pair (V n x, n + 1):

tstep := λr.let x ⊗ n = r in (V n x) ⊗ succ(n).

We have d�
 tstep : (D ⊗ Na) � (D[a + 1/a] ⊗ Na+1). Thus, we can iterate on this term using itern and this gives us the
desired iterator:

rec(V , t) := λn.let x ⊗ m = (itern(tstep, t ⊗ zero) n) in x.

This constructor can be defined likewise for words.

Addition for unary integers. In order to give an example of weight, we define the addition for unary integers in s�T. It is
represented by:

add := λx.itern(λy.succ(y), x) : NI � N J � NI+ J .

The typing derivation is:

(1)

I + a + 1 ≤ I + a + 1
NI+a � NI+a

x : NI , y : NI+a
 y : NI+a

x : NI , y : NI+a
 succ(y) : NI+a+1

π1 � x : NI
 λy.succ(y) : NI+a � NI+a+1
NI � NI+1

π2 � x : NI
 x : NI+1

x : NI
 itern(λy.succ(y), x) : N J � NI+ J

π0 � ·
 add : NI � N J � NI+ J

where (1) is NI+a � NI+a , NI+a � NI+ J , NI+a � NI+a+1, that is the conditions imposed by the iteration rule. We have
ω(π1) = 2 and ω(π2) = 1. Thus, the final weight is ω(π0) = 1 + (1 + J · (2 + 1)) = 3 J + 2.

Multiplication for unary integers. We also sketch the multiplication in s�T. The multiplication can be represented by:

mult := λx.itern(λy.add x y,zero) : NI � N J � NI· J

and the typing derivation is:

x : NI , y : NI·a
 add x y : NI·a+I

π1 � x : NI
 λy.add x y : NI·a � NI·a[a + 1/a] π2 � x : NI
 zero : NI

x : NI
 itern(λy.add x y,zero) : N J � NI· J

π0 � ·
 mult : NI � N J � NI· J

With the previous weight for add, we obtain ω(π1) = 3 · I · a + 5. We also have ω(π2) = 1. Thus, we can compute the
final weight:

ω(π0) = 1 + ω(π2) + J · (ω(π1) + 1)[J/a] = 3I J 2 + 6 J + 2.

Note that this way of doing multiplication is not optimal as we iterate on the largest number during the addition. However,
this is a good example for the weight, so we presented this version of multiplication instead of a better one.

Addition on binary integers. Now, we define some terms working on integers written in binary, with type WI , as we will
use them later in order to describe our term for S AT (see Section 4). First, we can define an addition on binary integers
in s�T with a control on the number of bits. More precisely, we can give a term Cadd : NI � W J1 � W J2 � WI such
that Cadd n w1 w2 outputs the least significant n bits of the sum w1 + w2. For example, Cadd 3 101 110 = 011, and
Cadd 5 101 110 = 01011. This will usually be used with a n greater than the expected number of bits, the idea being that
those extra 0 can be useful for some other programs. The term follows the usual idea for addition: the result is computed
bit by bit starting from the right, and we keep track of the carry.

Unary integers to binary integers. We define a term CUnToBi : NI � N J � WI such that on the input n, n′ , this term com-
putes the least n significant bits of the representation of n′ in binary:

CUnToBi= λn.itern(λw.Cadd n w (s1(ε)),Cadd n ε ε).

76 P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99
Binary integers to unary integers. We would like a way to compute the unary integer for a given binary integer. However,
this function is exponential in the size of its input, so it should have intuitively the type W J � N2 J

. As we cannot do
exponentiation on indexes, it is impossible to write such a function in s�T. Nevertheless, given an additional information
bounding the size of this unary word, we can give a term CBiToUn : NI � W J � NI such that on an input n, w this term
computes the minimum between n and the unary representation of w . What is important in this type is the discarding of
J . In order to do that, we first define a term min : NI � N J � NI . As NI is the type of integers of size smaller than I , we
have indeed that the minimum between an integer of size smaller than I and an integer of size smaller than J is smaller
than I . It is not a precise bound but it is sufficient for its incoming use. The idea to construct min is to use the following
term:

tstep := λr.let n ⊗ m = r in ifn(λm′.succ(n) ⊗ m′,n ⊗ zero) m.

The term tstep takes a pair of integers (n, m) and if m = 0, it does nothing, otherwise it returns (n + 1, m − 1). We can
derive the typing ·
 tstep : (Na ⊗ N J)� (Na+1 ⊗ N J). Thus, we can iterate on this term, and if we iterate n times starting
from the pair (0, n′) we indeed compute the minimum between n and n′:

min= λn,n′.letm ⊗ m′ = (itern(tstep,zero⊗ n′) n) inm.

Now that we have the term min, we can define the following term:

CBiToUn= λn.iterw(λn′.min n (mult n′ 2), λn′.min n (succ(mult n′ 2)),zero).

2.3. Some intermediate lemmas for the subject reduction

Index variable substitution and subtyping. In order to prove the subject reduction for s�T and that the weight is a bound on
the number of reduction steps of a term, we give some intermediate lemmas.

First, we show that typed values are linked to normal forms. In particular, this theorem shows that a value of type N
is indeed of the form succ(succ(. . . (succ(zero)) . . .)). From this it follows that in this call-by-value calculus, when an
argument is of type N, it is the encoding of an integer.

Theorem 1. Let t be a term in s�T, if t is closed and has a typing derivation
 t : D then t is normal if and only if t is a value V.

The proof is very common and it can be found in Appendix A.1.1.
We now give a list of intermediate lemmas for which we do not always detail the proofs if they are immediate.

Lemma 1 (Weakening). Let , � be disjoint typing contexts, and π � �
 t : D. Then, we have a proof π ′ � �,
 t : D with
ω(π) = ω(π ′).

Lemma 2 (Index substitution). Let I be an index.

1. Let J1, J2 be indexes such that J1 ≤ J2 then J1[I/a] ≤ J2[I/a].
2. Let J1, J2 be indexes such that J1 < J2 then J1[I/a] < J2[I/a].
3. Let D, D ′ be types such that D � D ′ then D[I/a] � D ′[I/a].
4. If π � �
 t : D then π [I/a] � �[I/a]
 t : D[I/a].
5. ω(π [I/a]) = ω(π)[I/a].

Proof. Point 1 and Point 2 are by definition of ≤ and <, then Point 3 is a direct induction on types using Point 1 for base
types. Point 4 and Point 5 are proved by induction on π :

• In the case of succ or si , we use Point 1.
• In the axiom rule, we use Point 3.
• Then, the only interesting cases are iterations. We show here the iteration for integers. Suppose that we have the

following proof:

D � E E � E[b + 1/b]
σ � d�
 V : D � D[b + 1/b]

E[J/b] � F

τ � �,d�
 t : D[1/b]
π�

�,d�
 itern(V , t) : N J � F

With ω(π) = ω(τ) + J · (ω(σ) + 1)[J/b]. We want to prove that π [I/a] � �[I/a]
 itern(V , t) : N J [I/a] � F [I/a].

P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99 77
By induction hypothesis and Point 3 of Lemma 2 we have

D[I/a] � E[I/a] E[I/a] � E[b + 1/b][I/a]
σ [I/a] � d�[I/a]
 V : D[I/a]� D[b + 1/b][I/a]

E[J/b][I/a] � F [I/a]
τ [I/a] � �[I/a],d�[I/a]
 t : D[1/b][I/a]

By using the fact that b must be a fresh variable in �, d�, J and F , we can suppose, by renaming, that b does not occur
in I . Then, we obtain:

D[I/a] � E[I/a] E[I/a] � E[I/a][b + 1/b]
σ [I/a] � d�[I/a]
 V : D[I/a] � D[I/a][b + 1/b]

E[I/a][J [I/a]/b] � F [I/a]
τ [I/a] � �[I/a],d�[I/a]
 t : D[I/a][1/b]

π [I/a]�
�[I/a],d�[I/a]
 itern(V , t) : N J [I/a] � F [I/a]

with weight ω(π [I/a]) = J [I/a] + ω(τ)[I/a] + J [I/a] · ω(σ)[I/a][J [I/a]/b].
And so ω(π [I/a]) = ω(π)[I/a]. �

Lemma 3 (Monotonic index substitution). Take J1, J2 such that J1 ≤ J2 .

1. Let I be an index, then I[J1/a] ≤ I[J2/a].
2. For any proof π , ω(π [J1/a]) ≤ ω(π [J2/a]).
3. Let E be a type. If E � E[a + 1/a] then E[J1/a] � E[J2/a] and if E[a + 1/a] � E then E[J2/a] � E[J1/a].

Proof. Point 1 can be proved by induction on indexes, and then Point 2 is just a particular case of Point 1, by Lemma 2.4.
Point 3 is proved by induction on the type E , and the proof is detailed in Appendix A.1.2. �
Lemma 4 (Typing Base Values). If π ��, d�
 V : U then we have a proof π ′ �d�
 V : U with ω(π) = ω(π ′). Moreover, ω(π ′) ≤ 1.

Indeed, the only rules we can use to type values of base type are the axiom rule with a variable in d� or the rules for
base constructors on integers, words or boolean such as zero or succ.

Another important lemma is the one for subtyping, it shows that we do not need an explicit rule for subtyping and
subtyping does not harm the upper bound derived from typing. Moreover, this lemma is important in order to substitute
variables, since the axiom rule allows subtyping.

Lemma 5 (Subtyping). If π � �
 t : D then for all �′, D ′ such that D � D ′ and �′ � �, we have a proof π ′ � �′
 t : D ′ with
ω(π ′) ≤ ω(π).

Proof. This can be proved by induction on π . The only interesting cases are for iterations, in which case the property
directly follows from Point 2 and Point 3 of Lemma 3. The iteration for integers is detailed in the Appendix A.1.3 �
Term substitution lemma. In order to prove the subject reduction of the calculus, we examine what happens during a substi-
tution of a value in a term. There are two cases, first the substitution of variables with base types, that is to say duplicable
variables, and then the substitution of variables with a non-base type for which the type system imposes linearity.

Lemma 6 (Value Substitution). Suppose that π � �1,d�, x : E
 t : D and σ � �2,d�
 V : E, then we have a proof π ′ � �1 ,
�2, d�
 t[V /x] : D. Moreover, if E is a base type then ω(π ′) ≤ ω(π). Otherwise, ω(π ′) ≤ ω(π) + ω(σ).

Proof. This is proved by induction on π . For the base type case, we use Lemma 4 to show that �2 can be ignored, and
then as d� is duplicable, the proof is rather direct. For the non-base case, in multiplicative rules such as application and
if, the property holds by the fact that x only appears in one of the premises, and so ω(σ) appears only once in the total
weight. �
2.4. Subject reduction and upper bound

We can now express the subject-reduction of the calculus and the fact that the weight of a proof strictly decreases
during a reduction.

Theorem 2. Suppose that τ � �
 t0 : D and t0 → t1 , then there is a proof τ ′ � �
 t1 : D such that ω(τ ′) < ω(τ).

The proof of this theorem can be found in Appendix A.1.4. The main difficulty is to prove the statement for base re-
ductions. Base reductions that induce a substitution, like the usual β-reduction, can be proved with Lemma 6. The other

78 P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99
interesting cases are the rules for iterators. For such a rule, the subject reduction is given by a good use of the fresh variable
given in the typing rule.

As the indexes can only define polynomials, the weight of a sequent can only be a polynomial on the index variables.
And so, in s�T, we can only define terms that work in time polynomial in their inputs.

2.5. Polynomial indexes and degree

For the following section on the elementary affine logic, we need to define a notion of degree of indexes and make clear
some properties of this notion.

Definition 5. The indexes can be seen as multi-variables polynomials, and we can define the degree of an index I by
induction on I .

• ∀n ∈N∗,d(n) = 0. • For an index variable a, d(a) = 1.

• d(I + J) = max(d(I),d(J)). • d(I · J) = d(I) + d(J).

This definition of degree is essential for the control of reductions in sEAL, that we present in the following section. We
obtain the following property for degree.

Theorem 3 (Degree). For all indexes I and J, the following properties are verified:

1. For all non-zero integer k, we have I[k/a] ≤ kd(I) · I[1/a].
2. If I ≤ J then d(I) ≤ d(J).

Proof. The first point is proved by induction on I . For the second point, let us first show the following lemma.

Lemma 7. Let I be an index with at most one index variable a. Then, we have ad(I) ≤ I ≤ I[1/a] · ad(I) .

This is proved directly by induction on indexes, and it uses the fact that the constant integers in indexes are non-zero,
the image of a variable in a valuation is non-zero and an index is always positive.

Now, we prove our theorem by contraposition. Given I, J such that d(I) > d(J), we construct two new indexes called I ′
and J ′ that are I and J in which we replaced all variables by a new fresh variable a. The degree stays the same, and we
have, by Lemma 7:

ad(J)+1 ≤ ad(I) ≤ I ′ and J ′ ≤ ad(J) · J ′[1/a].
If we replace a by k = (J ′[1/a] + 1) (which is a non-zero integer), we obtain:

I ′[k/a] ≥ kd(J)+1 and J ′[k/a] ≤ kd(J) · (k − 1).

And so we have I ′[k/a] > J ′[k/a]. We deduce that we have a valuation φ that sends all variables of I and J to k such
that Iφ > Jφ , so we do not have I ≤ J . By contraposition, we obtain Point 2 of Theorem 3. �

This second point shows that our notion of degree is well-defined w.r.t. the equivalence relation between indexes.

3. Elementary affine logic and sizes

We work on an elementary affine lambda calculus based on [18] without multithreading and side-effects, that we present
here. In order to solve the problem of intensional expressivity of this calculus, we enrich it with constructors for integers,
words and booleans, and some iterators on those types following the usual constraint on iteration in elementary affine logic
(EAL). Then, based on the fact that the proof of correctness in [18] is robust enough to support functions computable in
polynomial time with type N � N (see Section A.2 in the appendix for more details), we enrich EAL with the polynomial
time calculus defined previously. We call this new language sEAL (EAL with sizes). More precisely, we add the possibility
to use first-order s�T terms in this calculus in order to work on those base types, particularly we can then do controlled
iterations for those types. We then adapt the measure used in [18] to sEAL to find an upper-bound on the number of
reductions for a term.

P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99 79
(Lin Ax)
�, x : T |
 x : T

(Glob Ax)
� | , x : T
 x : T

�, x : T |
 M : U
(λ)

� |
 λx.M : T � U

� |
 M : U � T �′ |
 N : U
(App)

�,�′ |
 M N : T

· |
 M : T
(! Intro)

� | ′, []
!M : !T
� |
 M : !T �′ | , x : [T]
 N : U

(! Elim)
�,�′ |
 let !x = M in N : U

� |
 M : T α fresh in �,
(∀ Intro)

� |
 M : ∀α.T

� |
 M : ∀α.T
(∀ Elim)

� |
 M : T [U/α]

Fig. 4. Type system for the EAL-calculus.

3.1. An EAL-calculus

First, let us present a λ-calculus for the elementary affine logic. In this calculus, any sequence of reduction terminates in
elementary time. The keystone of this proof is the use of the modality “!”, called bang, inspired by linear logic. As in linear
logic, there are restrictions for the duplication of variables in this calculus. Moreover, the bang has a more limited use that
in linear logic, this limitation gives birth to the notion of depth. This notion is crucial to derive the elementary bound on
this calculus. To describe formally this calculus, we follow the presentation from [18] and we encode the usual restrictions
in a type system.

Definition 6. The set of terms is given by the grammar:

M, N := x | λx.M | M N |!M | let !x = M in N.

The constructor let !x = M in N binds the variable x in N . We define as usual the notion of free variables, free
occurrences and substitution.

Definition 7. The semantic of this calculus is given by the rules:

(λx.M) N → M[N/x] let !x =!M in N → N[M/x]
Those rules can be applied in any context.

We add to this calculus a polymorphic type system that also restrains the possible terms we can write. Types are given
by the grammar:

T , U := α | T � U |!T | ∀α.T .

Definition 8 (Typing Contexts). Linear variables contexts are denoted �, with the shape � = x1 : T1, . . . , xn : Tn . We write �1, �2
the disjoint union between �1 and �2. Global variables contexts are denoted , with the shape = x1 : T1, . . . , xn : Tn, y1 :
[T ′

1], . . . , ym : [T ′
m]. We say that [T] is a discharged type, as we could see in light linear logic [5,25]. A global variable

context x1 : T1, . . . , xn : Tn, y1 : [T ′
1], . . . , ym : [T ′

m] may sometimes be denoted by , [′]. In this case, we consider that
 = x1 : T1, . . . , xn : Tn and ′ = y1 : T ′

1, . . . , ym : T ′
m .

Typing judgments have the shape � |
 M : T . The intended meaning is that variables in � are used linearly in M
while variables in can be used non-linearly in M .

The rules are given in Fig. 4. Observe that all the rules are multiplicative for � and, seen from bottom to top, the “!
Intro” rule erases linear contexts, non-discharged types and transforms discharged types into usual types. With this, we can
see that some restrictions appear in a typed term. First, in λx.M , x occurs at most once in M , and moreover, there is no
“! Intro” rule below the axiom rule for x. Then, in let !x = M in M ′ , x can be used several times in M ′ , but there is
exactly one “! Intro” rule below each axiom rule for x. For example, with this type system, we can not type terms like λx.!x,
λ f , x. f (f x), let !x = M in x or let !x = M in !!x.

With this type system, we obtain as a consequence of the results exposed in [18] that any sequence of reductions of
a typed term terminates in elementary time. This proof relies on the notion of depth linked with the modality “!” and a
measure on terms bounding the number of reductions for this term. We will adapt those two notions in the following part
on sEAL, but for now, let us present some terms and encoding in this EAL-calculus.

3.1.1. Examples of terms in EAL and church integers
First, a useful term fonct : ∀α, α′.!(α � α′) �!α �!α′:

fonct := λ f , x.let !g = f in let !y = x in !(g y).

80 P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99
We sketch the typing derivation for this term.

f :!(α � α′) | ·
 f :!(α � α′)
x :!α | g : [(α � α′)]
 x :!α

. . .
· | g : (α � α′), y : α
 g y : α′

· | g : [(α � α′)], y : [α]
!(g y) :!α′

x :!α | g : [(α � α′)]
 let !y = x in !(g y) :!α′

f :!(α � α′), x :!α | ·
 let !g = f in let !y = x in !(g y) :!α′

f :!(α � α′) | ·
 λx.let !g = f in let !y = x in !(g y) :!α �!α′

· | ·
 fonct :!(α � α′) �!α �!α′

· | ·
 fonct : ∀α′.!(α � α′) �!α �!α′

· | ·
 fonct : ∀α,α′.!(α � α′) �!α �!α′

This term allows application under a bang. Indeed, the following reduction can be derived:

fonct !M !N →∗ let !g =!M in let !y =!N in !(g y) →∗!(M N)

Unary integers can be encoded in this calculus as Church integers, with N = ∀α.!(α � α) �!(α � α). For example, 3 is
represented by the term:

3 = λ f .let !g = f in !(λx.g (g (g x))) : N.

And we can represent addition and multiplication with type N � N � N:

add= λn,m, f .let ! f ′ = f in let !g = n ! f ′ in let !h = m ! f ′ in !(λx.h (g x)).

mult= λn,m, f .let !g = f in n(m !g).

And finally, one can also define an iterator using integers:

iter= λ f , x,n.fonct (n f) x : ∀α.!(α � α) �!α � N �!α
with iter !M !M ′ n →∗!(Mn M ′).

3.1.2. Intensional expressivity
Those examples show that this calculus suffers from limitation. First, we need to work with Church integers, because

of a lack of data structures. Furthermore, we need to be careful with the modality, and this can be sometimes a bit tricky,
as one can observe with the addition. And finally if we want to do an iteration, we are forced to work with types with
bangs. This implies that each time we need to use an iteration, we are forced to add a bang in the final type. Typically,
this prevents from iterating a function which has itself been defined by iteration. It has been proved that polynomial and
exponential complexity classes can be characterized in a variant of this calculus with recursive types [26]. For example, with
a type for words W and booleans B we have that !W �!!B characterizes polynomial time computation. However, because of
the restrictions mentioned above, some natural polynomial time programs cannot be typed with the type !W �!!B. We say
that this calculus has a limited intensional expressivity. One goal of this paper is to try to lessen this problem, and for that,
we now present an enriched version of this calculus, sEAL, using the language s�T.

3.2. Syntax and type system for sEAL

Let us first give some notations on vectors.

Definition 9 (Vectors). In the following we will work with vectors of Nn+1, for n ∈N . We introduce here some notations on
those vectors. We usually denote vectors by μ = (μ(0), . . . , μ(n)).

When there is no ambiguity with the value of n, for 0 ≤ k ≤ n, we note 1k for the vector μ with μ(k) = 1 and ∀i, 0 ≤
i ≤ n, i 	= k, μ(i) = 0. We extend this notation for k > n. In this case, 1k is the zero-vector.

Let μ0, μ1 ∈Nn+1. We write μ0 ≤ μ1 when ∀i, 0 ≤ i ≤ n, μ0(i) ≤ μ1(i). We also write μ0 ≤lex μ1 for the lexicographic
order on vectors.

For k ∈N , when there is no ambiguity with the value of n, we write k̃ the vector μ such that ∀i, 0 ≤ i ≤ n, μ(i) = k.
Then, the concatenation of two vectors is denoted by (μ0, μ1), the pointwise addition by μ0 +μ1 and the scalar product

by k · μ.

P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99 81
(λx.M) N → M[N/x] let !x =!M in N → N[M/x]
let x ⊗ y = M ⊗ M ′ in N → N[M/x][M ′/y] ifn(M, N) zero → N

ifn(M, M ′) succ(N) → M N iter!
N(!M, !N) n →!(Mn N)

ifw(M0, M1, N) ε → N ifw(M0, M1, M ′) si(N) → Mi N
iter!

W(!M0, !M1, !N) w →!(M w N) if(M, N) tt → M
if(M, N) ff → N if t → t′ in s�T then [t]() → [t′]()

[λxn . . . x1.t](M1, . . . , Mn−1,v) → [λxn−1 . . . x1.t[v/xn]](M1, . . . , Mn−1)

[v]() → v

Fig. 5. Base rules for sEAL.

3.2.1. Terms and reductions
Terms of sEAL are defined by the following grammar:

M, N ::= x | λx.M | M N |!M | let !x = M in N | M ⊗ N | let x ⊗ y = M in N

| zero | succ(M) | ifn(M, N) | iter!
N(M, N) | tt | ff | if(M, N)

| ε | si(M) | ifw(M0, M1, N) | iter!
W(M0, M1, N) | [λxn . . . x1.t](M1, . . . , Mn)

with i ∈ {0, 1}.
Note that the t used in [λxn . . . x1.t](M1, . . . , Mn) refers to terms defined in s�T. This notation means that we call the

function t defined in s�T with arguments M1, . . . , Mn . Moreover, n can be any integer, even zero. Constructors for iterations
directly follow from the ones we can usually define in EAL for Church integers or Church words, as we could see in the
previous section on EAL. As usual, we work up to α-isomorphism and we do not explicit the renaming of variables. As
before, for words, the choice of the alphabet � = {0, 1} is arbitrary, we could have chosen any finite alphabet.

Definition 10 (Base type values). We note v for base type values, defined by the grammar:

v := zero | succ(v) | ε | si(v) | tt | ff
with i ∈ {0, 1}.

In particular, if n is an integer and w is a binary word, we note n for the base value succn(zero), and w = w1 · · · wn

for the base value sw1 (. . .swn (ε) . . .). We also define the size |v| of v.

|zero| = |ε| = |tt| = |ff| = 1 |succ(v)| = |si(v)| = 1 + |v|

We may use the following notation for terms.

Definition 11 (Iterated Applications). For terms M, M ′ and an integer n, we write Mn M ′ to denote n applications of M to M ′ .
In particular, M0M ′ = M ′ . We also define for a word w , given terms Ma for all letter a, M w M ′ . This is defined by induction
on words with Mε M ′ = M ′ and Maw ′

M ′ = Ma (M w ′
M ′).

Base reductions are defined by the rules given in Fig. 5. Note that for some of these rules, for example the last one, v can
denote either the s�T term or the sEAL term.

C ::= [] | λx.C | C N | M C |!C | let !x = C in N | let !x = M in C | C ⊗ N | M ⊗ C

| let x ⊗ y = C in N | let x ⊗ y = M in C | succ(C) | ifn(C, N) | ifn(M, C)

| iter!
N(C, N) | iter!

N(M, C) | if(C, N) | if(M, C) | si(C) | ifw(C, M1, N)

| ifw(M0, C, N) | ifw(M0, M1, C) | iter!
W(C, M1, N) | iter!

W(M0, C, N)

| iter!
W(M0, M1, C) | [λxn . . . x1.t](M1, . . . , M j−1, C, M j+1, . . . , Mn).

with i ∈ {0, 1} and j ∈ {1, . . . , n}.
Those reductions can be extended to any context, and so we have M → M ′ if there is a context C and a base reduction

M0 → M ′
0 such that M = C[M0] and M ′ = C[M ′

0]. In order to work with s�T, we use the three last rules and contexts: from
the term [λxn . . . x1.t](M1, . . . , Mn), we could start by reducing the term Mn to obtain [λxn . . . x1.t](M1, . . . , Mn−1, v), then
use the second last reduction rule to obtain [λxn−1 . . . x1.t[v/xn]](M1, . . . , Mn−1), and repeat n times to obtain a term of the
form [t′](). We can then reduce this term t to a normal form v in s�T and we obtain in sEAL the term [v](). Finally, with
the last rule we obtain the value v. Note that this order for the reduction is not mandatory as contexts do not impose to
always start by reducing Mn .

82 P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99
π�
�, x : T |
 x : T μn(π) = 10

π�
� | , x : T
 x : T μn(π) = 10

σ � �, x : T |
 M : U
π�

� |
 λx.M : T � U
μn(π) = μn(σ) + 10

σ � � |
 M : U � T τ � �′ |
 N : U
π�

�,�′ |
 M N : T
μn(π) = μn(σ) + μn(τ) + 10

σ � · |
 M : T
π�

� | ′, []
!M : !T μn(π) = (1,μn−1(σ))

σ � � |
 M : !T τ � �′ | , x : [T]
 N : U
π�

�,�′ |
 let !x = M in N : U
μn(π) = μn(σ) + μn(τ) + 10

σ � � |
 M : T τ � �′ |
 N : U
π�

�,�′ |
 M ⊗ N : T ⊗ U
μn(π) = μn(σ) + μn(τ) + 10

σ � � |
 M : S ⊗ U τ � �′, x : S, y : U |
 N : T
π�

�,�′ |
 let x ⊗ y = M in N : T
μn(π) = μn(σ) + μn(τ) + 10

σ � � |
 M : T α fresh in �,
π�

� |
 M : ∀α.T
μn(π) = μn(σ)

σ � � |
 M : ∀α.T
π�

� |
 M : T [U/α] μn(π) = μn(σ)

Fig. 6. Type and measure for generic constructors in sEAL.

3.2.2. Types
Types are usual types for intuitionistic linear logic enriched with some base types for booleans, integers and words.

A := B | N | W

T , U , S := α | A | T � U |!T | T ⊗ U | ∀α.T

A type A is called a base type. The type for words W depends on the choice of the alphabet �.

Definition 12 (Contexts and Type System). Linear variables contexts are denoted � and global variables contexts are denoted .
They are defined in the same way as in the previous part on the EAL-calculus. Typing judgments have the usual shape of
dual contexts judgments π � � |
 M : T . For such a proof π , and i ∈N , we define a weight ωi(π) ∈N .

Definition 13 (Measure and Depth). For all integers k and n, we note μk
n(π) = (ωk(π), . . . ,ωn(π)), with the convention that

if k > n, then μk
n(π) is the empty vector. We write μn(π) to denote the vector μ0

n(π). In the definitions given in the type
system, instead of defining ωi(π) for all i, we define μn(π) for all n, from which one can recover the weights. We will
often call μn(π) the measure of the proof π . The depth of a proof π (or a typed term), denoted depth(π), is the greatest
integer i such that ωi(π) 	= 0. It is always defined for any proof.

The idea behind the definition of measure is to show that with a reduction step, this measure strictly decreases for the
lexicographic order and we can control the growing of the weights. The rules are given on Fig. 6, Fig. 7 and Fig. 8.

The rules given in Fig. 6 represent the usual constructors in EAL. Those rules impose some restrictions on the use of
variables similar to the ones described in the previous section on classical EAL. Observe that the constructors for base type
values such as zero and succ given in Fig. 7 influence the weight only in position 1 and not 0 like the other constructors.
As a consequence, if you take for example a proof of ·
 v : W, then this proof has depth 1.

For the rule given by Fig. 8, we first introduce some notations.

Definition 14 (Base Types in s�T and sEAL). For a base type A of sEAL and an index I , we define a base type A(I) in s�T:

B(I) := B N(I) := NI W(I) := WI

Reciprocally, for a base type U in s�T, we define a type in sEAL type(U) and an index ind(U).

• type(B) := B and ind(B) = 1.
• type(NI) := N and ind(NI) = I .
• type(WI) := W and ind(WI) = I .

P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99 83
π�
� |
 zero : N μn(π) = 11

σ � � |
 M : N
π�

� |
 succ(M) : N
μn(π) = μn(σ) + 11

σ � � |
 M : N � T τ � �′ |
 N : T
π�

�,�′ |
 ifn(M, N) : N � T
μn(π) = μn(σ) + μn(τ) + 10

σ � � |
 M : !(T � T) τ � �′ |
 N : !T
π�

�,�′ |
 iter!
N(M, N) : N �!T μn(π) = μn(σ) + μn(τ) + 10

π�
� |
 ε : W μn(π) = 11

σ � � |
 M : W
π�

� |
 si(M) : W
μn(π) = μn(σ) + 11

∀i, σi � �i |
 Mi : W � T τ � �′ |
 N : T
π�

�1,�2,�′ |
 ifw(M0, M1, N) : W � T
μn(π) = μn(σ1) + μn(σ2) + μn(τ) + 10

∀i, σi � �i |
 Mi : !(T � T) τ � �′ |
 N : !T
π�

�1,�2,�′ |
 iter!
W(M, N) : W �!T μn(π) = μn(σ1) + μn(σ2) + μn(τ) + 10

π�
� |
 tt : B μn(π) = 11

π�
� |
 ff : B μn(π) = 11

σ � � |
 M : T τ � �′ |
 N : T
π�

�,�′ |
 if(M, N) : B � T
μn(π) = μn(σ) + μn(τ) + 10

Fig. 7. Type and measure for constructors on base types in sEAL.

∀i, (1 ≤ i ≤ k),σi � �i |
 Mi : Ai τ � x1 : A(a1)
1 , . . . , xk : A(ak)

k
s�T t : U
π�

�,�1, . . . ,�k |
 [λxk . . . x1.t](M1, . . . , Mk) : type(U)

μn(π) =
k∑

i=1
μn(σi) + k(d(ω(τ) + I) + 1) · 10 + ((ω(τ) + I)[1/b1] · · · [1/bl] + 1) · 11

where I = ind(U) and {b1, . . . , bl} = Var(ω(τ)) ∪ Var(I).

Fig. 8. Typing rule and measure for the s�T call in sEAL.

Note that we associate the index 1 to B since boolean values are either tt or ff, thus values of size 1.

The premise for t is a proof τ in s�T. In this proof, we add on each non-boolean base type Ai an index variable ai . This
proof τ must yield a base type U , and this converts to a base type in sEAL. Moreover, the previous section gives us a weight
ω(τ) for this proof in s�T.

Let us now comment on the definition of μn(π). First, Var(I) is a notation for the set of variables in I . Then, at position
0 in the weight, we put k times the degree of ω(τ) and ind(U). Indeed, as one could see in the incoming definition of Red
(Definition 16) or more informally in Appendix A.2, having k times the degree at position 0 allows the future k substitution
of x1, . . . , xk by their actual value. Then, as this term outputs a base type, and as base types have their size at position 1
in the weight, we add at position 1 an expression that will allow us to bound the number of reductions in s�T and the
size of the output. Furthermore, remark that when k = 0, the term [t]() influences only the weight at position 1, such as
constructors for base types.

3.3. Subject reduction and measure

In this section, we show that we can bound the number of reduction steps of a typed term using the measure. This is
done first by showing that a reduction preserves some properties on the measure, and then by giving an explicit integer
bound that will strictly decrease after a reduction. This proof uses the same method as the one from [18]. The relation Red
defined in the following is a generalization of the usual requirements exposed in elementary linear logic in order to control
reductions.

Let us first express that type variables can be substituted.

Lemma 8 (Substitution of Type Variables). Suppose that π � � |
 M : T . Then, for every type variable α and for every type U , we
can derive a proof π [U/α] � �[U/α] | [U/α]
 M : T [U/α] with ∀n,μn(π) = μn(π [U/α]).

84 P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99
Proof. By induction on π . All cases are straightforward, we just need to be a bit careful with the renaming of variables for
the introduction of ∀ and choose the good instantiation for the elimination of ∀. �

Let us then express substitution lemmas for sEAL. There are 3 cases to consider: linear variables, discharged global
variables and non-discharged global variables.

Lemma 9 (Linear Substitution). Suppose that π � �1, x : T ′ |
 M : T and σ � �2 |
 M ′ : T ′ , then, we have a proof π ′ ��1, �2 |

 M[M ′/x] : T . Moreover, for all n, μn(π

′) ≤ μn(π) + μn(σ).

Proof. The proof comes from the fact that rules are multiplicative for � and so x only appears in one of the premises for
each rule. Thus, the proof σ is used only once in the new proof π ′ . �
Lemma 10 (General Substitution). Suppose that π � � | , x : T ′
 M : T and σ � · |
 M ′ : T ′ and the number of occurrences of x
in M is less than K , then we have a proof π ′ � � |
 M[M ′/x] : T . Moreover, for all n, μn(π

′) ≤ μn(π) + K · μn(σ).

Proof. This time, the non-linearity of the variable x induces a duplication of the proof σ , that is why the measure μn(σ) is
also duplicated. �
Lemma 11 (Discharged Substitution). If π � � | ′, [], x : [T ′]
 M : T and σ � · |
 M ′ : T ′ then we have a proof π ′ � � |
′, []
 M[M ′/x] : T . Moreover, for all n, μn(π ′) ≤ (ω0(π), (μ1

n(π) + ω1(π) · μn−1(σ))).

Proof. The proof of this lemma relies directly on Lemma 10. Indeed, a variable with a discharged type can be used only
after crossing a (!-Intro) rule and then the upper bound on μn(π ′) comes from the previous lemma since the number of
occurrences of x in M is less than ω1(π). �

Next, let us give two important definitions, tα and Red, in order to derive the upper bound on the number of reduction
steps in sEAL.

Definition 15 (Tower of Functions). We define a family of tower functions tα(x1, . . . , xn) on vectors of integers by induction
on n, where we assume α ≥ 1 and xi ≥ 2 for all i: tα() = 0 and tα(x1, . . . , xn) = (α · xn)2tα(x1,...,xn−1)

for n ≥ 1.

For example, tα(3, 4, 5) = (5α)2(4α)23α

. Note that tα(x1, . . . , xn) is a polynomial function in xn (if x1, . . . , xn−1 are fixed)
and a tower of exponential of height 2n for x1 (if x2, . . . , xn are fixed). This function gives us a bound on the measure of a
given proof. However, it is not convenient to work with, so we give a sufficient condition on two vectors μ and μ′ to have
tα(μ′) < tα(μ).

Definition 16 (Red). We define a relation on vectors denoted Red. Intuitively, we want Red(μ, μ′) to express that a proof
of measure μ has been reduced to a proof of measure μ′ . Let μ, μ′ ∈Nn+1. We have Red(μ, μ′) if and only if the following
conditions are satisfied:

1. μ ≥ 2̃ and μ′ ≥ 2̃.
2. μ′ <lex μ, so formally there exists 0 ≤ i0 ≤ n, μ = (ω0, . . . , ωn) and μ′ = (ω0, . . . , ωi0−1, ω′

i0
, . . . , ω′

n), with ωi0 > ω′
i0

.

3. There exists d ∈N, 1 ≤ d ≤ (ωi0 − ω′
i0
) such that for all j > i0, we have ω′

j ≤ ω j · (ωi0+1)
d−1.

The first condition with 2̃, that can also be seen in the definition of tα , makes calculation easier, since with this condition,
exponentials and multiplications conserve the strict order between integers. This does not harm the proof, since we can sim-
ply add 2̃ to each vector we will consider. For an example of two vectors in relation, we have Red((2, 5, 3, 2), (2, 2, 25, 15)):

• (2, 5, 3, 2) ≥ (2, 2, 2, 2) and (2, 2, 25, 15) ≥ (2, 2, 2, 2).
• (2, 2, 25, 15) <lex (2, 5, 3, 2), with i0 = 1.
• If we take d = 3, we have indeed 1 ≤ d ≤ 5 − 2. Moreover, we have 25 ≤ 3 · 32 = 27 and 15 ≤ 2 · 32 = 18.

One can see on this example that Red(μ, μ′) indicates that μ′ <lex μ and the components of the vector μ′ are not “too
big” compared to μ.

We can then connect those two definitions:

Theorem 4. Let μ, μ′ ∈Nn+1 and α ≥ n, α ≥ 1. If we have Red(μ, μ′) then tα(μ′) < tα(μ).

P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99 85
The proof can be found in Appendix A.3.1. It shows that if we want to ensure that a certain integer defined with tα
strictly decreases for a reduction, it is sufficient to work with the relation Red.

Finally, we need to consider rules for polymorphism. Because of the ∀ elimination and introduction rules, our type
system is not syntax directed. However, we can prove that for some terms, namely introduction terms, we can “recover”
syntax directed rules.

Definition 17. A term Mintro is said to be an introduction term if it has one of those form:

λx.M |!M | M ⊗ N | zero | succ(M) | ifn(M, N) | iter!
N(M, N) | tt | ff

| if(M, N) | ε | si(M) | ifw(M0, M1, N) | iter!
W(M0, M1, N).

To each such term we can associate a typing rule, for instance to λx.M the rule (�), to !M the rule (!) etc. Note that these
rules correspond to introduction rules and rules for base type constructors.

For the sake of simplicity, we introduce a notation for list of objects. Let us write T to denote a sequence T1, . . . , Tn
of types, and ∀α.T to denote the type ∀α1 . . .∀αn.T when T does not begin with a quantifier. We can now present the
generation lemma.

Lemma 12 (Generation lemma). Let Mintro be an introduction term. Let π be a typing π �� |
 Mintro : ∀α.T , where type variables
in α are fresh in � and . Let T ′ be an instantiation of α. Let (R) denote the rule associated to Mintro and n its number of premises.
Then there exist type derivations π ′

1, . . . , π
′
n such that if π ′ is the derivation obtained by applying the rule (R) to π ′

1, . . . , π
′
n we have:

• π ′ is a typing of conclusion π ′ � � |
 Mintro : T [T ′/α].
• For all integer k, μk(π

′) = μk(π).

For example, if π � � |
 λx.M : ∀α.(T � U), then for any sequence of type T ′ with same length as α, such that
variables in α are not free in T ′ , we have a proof π ′

1 � �, x : T [T ′/α] |
 M : U [T ′/α] with for all k, μk(π) = μk(π
′
1) + 10.

So for each case of form for Mintro , we can state this lemma more formally just by looking at the associated typing rule.
Observe that for terms like zero, this lemma only states that the measure of the proof is exactly 11.

Proof. This is proved by induction on π � � |
 Mintro : ∀α.T . Observe that for a given Mintro there are only 3 possibles
rules: introduction and elimination of ∀ and the rule (R) associated to the form of Mintro .

• Rule (R). This case is trivial, this is exactly the definition of the generation lemma, with α = ∅. Observe that for this
case, it is important to consider only introduction terms, otherwise there is no reason that α = ∅.

• Elimination of ∀. Suppose we have the proof

τ � � |
 Mintro : ∀α0.∀α.T
π�

� |
 Mintro : ∀α.T [T ′
0/α0]

By definition, we have ∀k, μk(π) = μk(τ). By renaming, α0 and variables in α are not free in T ′
0. Take a sequence of

type T ′ with same length as α, then (T ′
0, T ′) has the same length as (α0, α), thus we can conclude directly by induction

hypothesis and using the fact that ∀k, μk(π) = μk(τ).
• Introduction of ∀. Suppose we have the proof

τ � � |
 Mintro : ∀α.T α0 fresh in � and
π�

� |
 Mintro : ∀(α0,α).T

By definition, we have ∀k, μk(π) = μk(τ). Take a sequence of type (T ′
0, T ′). Let (R) denote the rule associated to

Mintro and n its number of premises. By induction hypothesis, there exist type derivations π ′
1, . . . , π

′
n such that if π ′ is

the derivation obtained by applying the rule (R) to π ′
1, . . . , π

′
n , we have π ′ � � |
 Mintro : T [T ′/α] and ∀k, μk(π

′) =
μk(π). By Lemma 8, we can instantiate α0 by T ′

0 in π ′
1, . . . , π

′
n and we obtain proofs π ′′

1 , . . . , π ′′
n such that, if we denote

π ′′ the derivation obtained by applying the rule (R) to π ′′
1 , . . . , π ′′

n , we have π ′′ � � |
 Mintro : T [(T ′
0, T ′)/(α0,α)].

Moreover, for all k, μk(π
′′) = μk(π

′) = μk(π). �
We can now state the subject reduction of sEAL and we show that the measure allows us to construct a bound on the

number of reductions.

Theorem 5. Let τ � � |
 M0 : T and M0 → M1 . Let α be an integer equal or greater than the depth of τ . Then there is a proof
τ ′ � � |
 M1 : T such that Red(μα(τ) + 2̃, μα(τ ′) + 2̃). Moreover, the depth of τ ′ is smaller than the depth of τ .

86 P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99
The proof can be found in Appendix A.3.2. With Lemma 12, for some terms, we can do as if the typing rules were syntax
directed. Then, the proof uses the substitution lemmas (Lemma 9 and Lemma 11) for reductions in which substitution
appears. For the other constructors, one can see that the measure given in the type system for sEAL is following this idea
of the relation Red. For example, in [λxn . . . x1.t](M1, . . . , Mn−1, v) → [λxn−1 . . . x1.t[v/xn]](M1, . . . , Mn−1), the degree that
appears at position 0 is here to compensate the growing of the measure at position 1. Now using the previous results, we
can easily conclude our bound on the number of reductions.

Theorem 6. Let π � � |
 M : T . Denote α = max(depth(π), 1), then tα(μα(π) + 2̃) is a bound on the number of reductions
from M.

4. Programming with sEAL

4.1. Simple examples in sEAL

We give some examples of terms in sEAL, first some terms we can usually see for the elementary affine logic, and then
we give the term for computing tower of exponentials.

Some general results and notations on sEAL.

• For base types A we have the coercion A �!A. For example, for words, we have coercw w →∗ !w , with:

coercw = iter!
W(!(λw ′.s0(w ′)), !(λw ′.s1(w ′)), !ε).

• We write λx ⊗ y.M for the term λz.let x ⊗ y = z in M .

Polynomials and tower of exponentials in sEAL. Recall that we defined polynomials in s�T. With this we can define polynomials
in sEAL with type N � N using the s�T call. Moreover, using the iteration in sEAL, we can define a tower of exponential.

We can compute the function k �→ 22k
in sEAL with type N �!N.

n : N | ·
 n : N σ � x1 : Na1
s�T mult x1 x1 : Na1·a1

n : N | ·
 [λx1.mult x1 x1](n) : N

π � · | ·
 λn.[λx1.mult x1 x1](n) : N � N

· | ·
 !(λn.[λx1.mult x1 x1](n)) : !(N � N) · | ·
 !2 : !N
· | ·
 exp= iter!

N(!λn.[λx1.mult x1 x1](n), !2) : N �!N

iter!
N(!λn.[λx1.mult x1 x1](n), !2) k →∗!((λn.[λx1.mult x1 x1](n))k 2) →∗!(22k

).

For an example of measure, for the subproof π , we have depth(π) = 1. From Section 2.2, we can deduce the weight for
σ : ω(σ) = 4 + 6a1 + 3a3

1. We can then deduce:

μ(π) = (1 + 1 + 1 · (d(ω(σ) + a1 · a1) + 1),1 + (ω(σ) + a1 · a1)[1/a1]) = (6,15).

If we define 2x
0 = x and 2x

k+1 = 22x
k , with the use of polynomials, we can represent the function n �→ 2P (n)

2k for all k ≥ 0

and polynomial P with a term of type N �!kN.

4.2. Example: testing satisfiability of a propositional formula

We sketch here the construction of a term for deciding the S AT problem.
The term for S AT has type N ⊗ W �!B and given a formula on conjunctive normal form encoded in the type N ⊗ W, it

checks its satisfiability. The modality in front of the output !B shows that we used a non-polynomial computation, or more
precisely an iteration in sEAL, as expected of a term for satisfiability.

We encode formula in conjunctive normal form in the type N ⊗ W, representing the number of distinct variables in the
formula and the encoding of the formula by a word on the alphabet � = {0, 1, #, |}. A literal is represented by the number
of the corresponding variable written in binary and the first bit determines if the literal is positive or negative. Then # and
| are used as separator for literals and clauses.

For example, the formula (x1 ∨ x0 ∨ x2) ∧ (x3 ∨ x0 ∨ x1) ∧ (x2 ∨ x0 ∨ x3) could be represented by 4 ⊗
|#101#100#110|#111#000#001|#010#100#011.

P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99 87
LittoBool≡ λn,v, l. ifw(
λl’.nth v (CBiToUn n l’)
,λl’. not (nth v (CBiToUn n l’))
,ff

) l
ClausetoBool≡ λn,v,c. let w ⊗ b =

itern(
λw ′ ⊗ b′. let w0 ⊗ w1 = Extract# w’ in

w0 ⊗ (or b’ (LitttoBool n v w1))
,c ⊗ ff

) (occ# c)
in b

SAT≡ λn ⊗ w. let !r = iter!
N(

! (λn0 ⊗ n1. succ(n0) ⊗ [double](n1))
,!(0 ⊗ 1)

) n in let !w f =coerc w in
! (let n ⊗ exp =r in

[λn,exp, w f. rec(
λv,b. or b (FormulatoBool n (CUnToBi n v) w f)
,ff

) exp](n,exp, w f)
)

QBF0 ≡ λv ⊗ q ⊗ f. FormulatoBool (length v) v f
QBF1 ≡ λv ⊗ n ⊗ exp ⊗ q ⊗ f. rec(

λv’,b. (andor q) b (QBF0
(conc v (CUnToBi n v’)) ⊗ (not q) ⊗ f)

,q
) exp

SubSum≡ λw S. Riterw(
λw ⊗ r. let w0 ⊗ w1 =Extract| w in w0 ⊗ r
,λw ⊗ r. let w0 ⊗ w1 =Extract| w in w0 ⊗ (Binaryadd r w1)
,w S ⊗ s0(ε))

SolvSubSum≡ λk ⊗ w S. let !r =
(exp [occ|] ⊗ coerc)(w S) ⊗ (coerc k) in
![λn,w,k. rec(

λv,b or b (equal k (SubSum w (CUnToBi (occ| w) v)))
,ff) n

](r)

Fig. 9. Examples in sEAL.

Intermediate terms in s�T. For the sake of simplicity, we sometimes omit to describe all terms in ifw or iterw, especially
for the letters # and |, when they are not important. First, we can easily define a term occa : WI � NI that gives the
number of occurrences of a ∈ � in a word. We can also describe a term that gives the nth bit (from the right) of a binary
word as a boolean nth : WI � NI � B. And finally, we have a term Extracta : WI � WI ⊗ WI that separates a word
w = w0aw1 in w0 ⊗ w1 such that w1 does not contain any a. This function will allow us to extract the last clause/literal
of a word representing a formula.

A valuation is represented by a binary word with a length equal to the number of variables, such that the
nth bit of the word represents the boolean associated to the nth variable. To begin with, we define the term
LittoBool : NI � W J � WK � B such that given the number of variables, a valuation and the encoding of a literal,
this term yields the boolean value that the valuation assigns to the literal. This term is described in Fig. 9.

We then define a term ClausetoBool : NI � W J � WK � B such that, given the number of variables, a valuation and
a word representing a clause, this term outputs the truth value of this clause using the valuation. The definition is given in
Fig. 9. With this we can check if a clause is true given a certain valuation. We can define in the same way a term for the
truth value of a formula FormulatoBool : NI � W J � WK � B. It is the same definition as ClausetoBool, where we
replace “or” by “and” and “LitttoBool” by “ClausetoBool”.

Testing all different valuations. Now that we have FormulatoBool, all we have to do is to test this term with all possible
valuations. If n is the number of variables, all possible valuations are described by all the binary integers from 0 to 2n − 1.
Thus, intuitively, given the number of variables n and the formula w f , we want to compute:

2n−1∨
FormulatoBool n v w f .
v=0

88 P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99
In order to do this, we use the constructor for iteration defined in Section 2.2: rec(V , t) n →∗
V n − 1 (V n − 2 (. . . (V zero t) . . .)).

We can then give the term for S AT as described in Fig. 9.
The first iteration computes both 2n and a copy of n. This technique is important as it shows that the linearity of sEAL

for base variables is not too constraining for the iteration. Then, the second iteration in s�T computes the big “or” given
previously. Note that we need to be cautious about how to write integers, the number of variables n and exp (the integer
representing 2n) are given in unary, but we need the valuation in binary. And with that we have SAT : N ⊗ W �!B.

Defining a s�T term for Q B Fk. Now we consider the following Q B Fk problem, with k being a fixed non-negative integer.
Take a formula:

Q kxn, xn−1, . . . , xik−1+1. Q k−1xik−1 , xik−1−1, . . . , xik−2+1 . . . , Q 1xi1 , xi1−1, . . . x0.φ.

The formula φ is a propositional formula in conjunctive normal form on the variables from x0 to xn , and Q i ∈ {∀, ∃} are
alternating quantifiers. That means that if Q 1 is ∀ then Q 2 must be ∃ and then Q 3 must be ∀ and so on. Here the variables
are ordered for simplification. It can always be done by renaming. And now we have to answer if this formula is true. This
can be solved in our enriched EAL calculus.

First, let us talk about the encoding of such a formula. With those ordered variables, a representation of such a formula
can be a term of type Nk ⊗ Nk−1 ⊗ · · · ⊗ N1 ⊗ B ⊗ W. For all i with 1 ≤ i ≤ k, Ni represents the number of variables between
the quantifiers Q i and Q i−1. The boolean represents the quantifier Q k , with the convention ∀ = tt. And finally, the formula
φ is encoded in a word as previously. This is not a canonical representation of a formula, but for any good encoding of a
Q B Fk formula we should be able to extract this information with a s�T term, so for simplification, we directly take this
encoding. For example, with k = 2, the formula:

∀x3, x2.∃x1, x0.(x1 ∨ x0 ∨ x2) ∧ (x3 ∨ x0 ∨ x1) ∧ (x2 ∨ x0 ∨ x3)

is represented by:

2 ⊗ 2 ⊗ tt⊗ |#101#100#110|#111#000#001|#010#100#011.

Now we define by induction on k a s�T term called QBFk for k a non-negative integer. We give to this term the type:

QBFk : WK1 ⊗ NIk ⊗ N Jk ⊗ · · · ⊗ NI1 ⊗ N J1 ⊗ B ⊗ WK2 � B.

One can see a similitude with the representation of a S AT formula. But we add some arguments. First, the argument w v

of type WK1 is a valuation on free variables of the Q B Fk formula. Then we are given for each quantifier two integers ni
and expi of type NIi and N J i , with ni being the number of variables between the quantifiers Q i and Q i−1, and expi = 2ni .
Finally, the boolean represents the quantifier Q k and WK2 is a formula on variables from x0 to xn1+···+nk+length(w v)−1.

QBF0 has almost already been defined. See Fig. 9 for the exact term.
Now, let us describe the term for QBF1. One can observe that it is close to the s�T term SAT. First, we have

andor : B � B � B = if(and,or). We also write conc : WI � W J � WI+ J the term for concatenation of words. With
that we can define QBF1 as explained in Fig. 9. So, contrary to SAT, we do not always do a big “or” on the results of QBF0
but we do either a big “and” if the quantifier Q k is ∀, or a big “or” if the quantifier is ∃, as one can observe with the use of
andor. And when we call QBF0, we have to update the current valuation w v and we have to alternate the quantifier. Now
with this intuition, we can deduce the general term for QBFk+1 using QBFk , and then we can also deduce the sEAL term
that just computes the arguments of the s�T term QBFk (with only one “!” as we only need to compute exponentials) and
uses this function. And so, we obtain a term solving Q B Fk with type Nk ⊗ Nk−1 ⊗ · · · ⊗ N1 ⊗ B ⊗ W �!B.

4.3. Solving the SU B S E T SU M problem

We give here another example of solving an NP-Complete problem. Given a goal integer k ∈ N and a set S of integers,
is there a subset S ′ ⊂ S such that

∑
n∈S ′

n = k? We explain how we could solve this problem in our calculus. We represent

the SU B S E T SU M problem by two words, k written as a binary integer and a word of the form |n1|n2| . . . |nm , with the
integers written in binary, representing the set S . In order to solve this problem, we can first define a s�T term equal :
WI � W J � B that verifies if two binary integers are equal. Note that this is not exactly the equality on words because of
the possible extra zeros at the beginning. Then, we can define a term SubSum : WI � W J � WI· J such that, given the word
w S representing the set S and a binary word wsub with a length equal to the cardinality of S , this term computes the sum
of all the elements of the subset represented by wsub , since this word can be seen as a function from S to {0, 1}. See Fig. 9
for the term. We obtain a type WI· J for the output because we iterate at most J times a function for binary addition which
can be given a type Wa·I � WI � W(a+1)·I . Note that to define this function, we use Extract| defined previously. Then,
we can solve the SU B S E T SU M problem in the same way as S AT in the term SolvSubSum. The notation (f ⊗ g)(x),
when f and g are functions defined by iterators, stands for the function defined by iteration on a couple, where the first

P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99 89
projection will compute f and the second one g , such as before in SAT. And so, we obtain a term of type W ⊗ W �!B. We
could also construct a term that gives us the subset corresponding to the goal, by changing the type in the iteration rec
from Na � B � B to Na � (B ⊗ WI) � (B ⊗ WI), WI being the type of the argument w .

5. Complexity results: characterization of 2k-EXP and 2k-FEXP

Now that we have proved Theorem 5, we have obtained a bound on the number of reduction steps from a term in sEAL.
More precisely, this bound shows that between two consecutive weights ωi+1 and ωi , there is a difference of 2 in the height
of the tower of exponentials. This will allow us to give a characterization of the classes 2k-EXP for k ≥ 0, and each modality
“!” in the type of a term will induce a difference of 2 in the height of the tower of exponentials. With exactly the same
method, we also have a characterization of the classes 2k-FEXP for k ≥ 0.

Restricted reductions and values. First, we show that the previous bound on the number of reductions steps in Theorem 6
can be improved. Indeed, if we restrict the possible reductions, we obtain a more precise bound.

Definition 18 (Reductions up to a Certain Depth). For i ∈N , we define the i-reductions, that we note →i :

• ∀i ≥ 1, [t]() →i [t′]() if t → t′ in s�T. Moreover, [v]() →i v.
• For the other base reductions M → M ′ , we have ∀i ∈N, M →i M ′ .
• For all i ∈N , if M →i M ′ then !M →i+1!M ′ .
• For all others constructors for contexts, the index i stays the same. For example with the application, we have for all

i ∈N , if M →i M ′ then M N →i M ′ N .

Now, we can find a more precise measure to bound the number of i-reductions.

Lemma 13. Let i ∈ N , τ � � |
 M0 : T and M0 →i M1 . Then there is a proof τ ′ � � |
 M1 : T such that Red(μi(τ) +
2̃, μi(τ

′) + 2̃).

The proof of this lemma is very similar to the proof of Theorem 5, the details are expressed in the proof of Theorem 5
in Appendix A.3.2. We can then deduce the following theorem using previous results on the relation Red.

Theorem 7. Let π � � |
 M : T and α = max(i, 1). Then tα(μi(π) + 2̃) is a bound on the number of i-reductions from M.

Let us now give an over approximation of the set of closed normal terms for i-reductions, that we call i-values.

Definition 19 (Values Associated to Restricted Reductions). We define for all i ∈N , closed i-values V i by the following grammar.

V 0 := M

∀i ≥ 1, V i := λx.M |!V i−1 | V i
0 ⊗ V i

1 | zero | succ(V i) | ifn(V i
0, V i

1) | iter!
N(V i

0, V i
1)

| tt | ff | if(V i
0, V i

1) | ε | si(V i) | ifw(V i
0, V i

1, V i
2) | iter!

W(V i
0, V i

1, V i
2)

We can then prove the following lemma:

Lemma 14. Let M be a term. If M is closed and has a typing derivation then, for all i ∈N , if M is normal for i-reductions then M is an
i-value V i .

The proof is very similar to the one of Theorem 1. Note that we do not have the converse, an i-value is not a normal
form for i-reductions. However, we do not need the converse to obtain the complexity results, we are only interested in
base type closed i-values with i ≥ 1. That is why 0-values and non-closed term, such as M in λx.M , are so generic.

From the previous results, we now have that, from a typed term M , we can reach the normal form for i-reductions for
M in less than ti(μi(π) + 2̃) reductions, and this normal form is an i-value.

A characterization of 2k-EXP. Now, we sketch how the type !W �!k+1B can characterize the class 2k-EXP for k ≥ 0. Recall
that 2x

k is defined by 2x
0 = x and 2x

k+1 = 22x
k . The class k-EXP is the class of problems solvable by a Turing machine that

works in time 2p(n)

k on an entry of size n, where p is a polynomial. First we show that the number of reductions for such a
term is bounded by a tower of exponentials of height 2k.

Lemma 15. Let π � · | ·
 t :!W �!k+1B. Let w be a word of size |w|. We can compute the result of t !w in less than a 2k-exponential
tower in |w|.

90 P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99
Proof. Observe that the result of this computation is of type !k+1B, and a (k + 2)-value of type !k+1B is exactly of the form
!k+1tt or !k+1ff. So it is enough to only consider (k + 2)-reductions to compute the result, by Lemma 14. The measure μn

of t !w is μn = μn(π) +2 ·10 +|w| ·12. By Theorem 7, we can bound the number of reductions from t !w by tk+2(μk+2 + 2̃).
By definition, in tk+2(μk+2 + 2̃), we can see that the weight at position 2, where the size of w appears, is at height 2k. �

Now we have to prove that we can simulate a Turing-machine in our calculus. This proof is usual in implicit complexity
[6,26]. A sketch of this proof can be found in the appendix, Section A.4. With this, using Lemma 15, we obtain the following
theorem.

Theorem 8. Terms of type !W �!k+1B characterize the class 2k-EXP.

As explained previously, this theorem can be expanded for the classes 2k-FEXP, that is the class of functions from words
to words that can be computed by a one-tape Turing machine with a running time bounded by 2p(|w|)

2k on a word w . For
more precise definitions of such classes, see [26]. This characterization uses the same proof, replacing !W �!k+1B with
!W �!k+1W.

Let us now briefly compare this result for sEAL with the situation for EAL. Recall that in EAL with recursive types, we can
characterize k-EXP with the type !W �!k+2B [6]. The difference can be explained by the fact that in EAL, in the type N � N
we only have polynomials of degree 1 (polynomials in general have the type !N �!N), whereas in our case, polynomials
have the type N � N.

6. Conclusion

We believe that our main contribution in this paper is to define a new methodology to combine size-based and level-
based type systems, which we have illustrated here with the example of s�T and EAL, but we think it is of more general
interest. In the present particular setting of sEAL we can wonder which enrichment we can add to EAL while keeping its
properties, for instance: new data-types (lists, trees), the possibility to freely duplicate base types. . . We should also in-
vestigate type inference techniques, by drawing inspiration from linear dependent types [16,27] and EAL [28]. But more
importantly we would like to explore to which other systems we could apply this methodology:

• First can we define a similar system in which we could move up one level of ! and stay in polynomial time? We
conjecture that this could be obtained with EAL but replacing s�T with a system of indexes of degree at most 1 and
coefficients 1, instead of polynomial indexes. In this case we believe that the type !W �!!B would correspond to PTIME.
An alternative choice could be to use a non-size-increasing types system [8] instead of s�T.

• Can we define a system in which all levels stay in FPTIME? Beside the condition on indexes (degree at most 1) we
would also need for that purpose to replace EAL with another level-based system. Light linear logic [5] is a natural
candidate, but we would need to find a measure-based argument for its complexity bound, which is a challenging
objective.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

The authors would like to thank the anonymous referees for many insightful comments.
This work was supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program “In-

vestissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR), and by the ANR
Project ELICA ANR-14-CE25-0005.

Appendix A

A.1. Lemmas and theorems in s�T

A.1.1. Values and normal form
We prove Theorem 1:
Let t be a term in s�T, if t is closed and has a typing derivation
 t : D then t is normal if and only if t is a value V .

Proof. First, we prove by induction on values V that if V is closed and has a typing derivation then V is normal. We treat
only some cases and the others are easily deducible from those cases.

P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99 91
• If V = λx.t then V is normal since in the definition of contexts for reductions, we cannot reduce under a λ-abstraction.
• If V = V 0 ⊗ V 1. V is closed so are V 0 and V 1. Moreover, V has a typing derivation, so it must end with the introduction

of tensor rule, and we deduce that V 0 and V 1 have also a typing derivation. So by induction hypothesis, V 0 and V 1
are normal. Then V has no base reduction possible, and no contexts reductions since V 0 and V 1 are normals, so V is
normal.

• If V = zero then V is normal.

Now for the other implication, we prove that if a closed typed term is normal then it is a value. We prove that by
induction on terms, again we only detail some interesting cases.

• If t := t0 t1. Suppose, by absurd, that t is a closed typed normal term. Since t has a typing derivation, we know that t0
and t1 are also closed typed terms. By definition of contexts in which we can apply reductions, t0 is normal, and so by
induction hypothesis, t0 is a value. Again, by definition of contexts, t1 is normal, and so by induction hypothesis, t1 is
a value. So t0 is a value with an arrow type D � E . By looking at the definition of values, either t0 is a λ-abstraction,
or it is one of the functional constructors like ifn. If t0 is a λ-abstraction, as t1 is a value, we could apply the usual
β-rule, so this is not possible because t is normal. If t0 is ifn(V , V ′), as t1 is a value of type N, it is the encoding of an
integer, and so t is not normal since we could apply one of the ifn rules. All the other cases work in the same way,
and we deduce that t cannot be normal.

• If t := let x ⊗ y = t0 in t1. Suppose that t is a closed typed normal term. Since t has a typing derivation, we know that
t0 has also a typing derivation, and t0 is closed. By definition of contexts, t0 is normal and so by induction hypothesis,
t0 is a value. t0 has a tensor type D ⊗ E , by definition of values, t0 is of the form V ⊗ W , this is absurd since in this
case t would not be normal. And so, we deduce that t cannot be a normal term. �

A.1.2. Monotonic index substitution
We recall and prove Point 3 of Lemma 3.
Take J1, J2 such that J1 ≤ J2 . Let E be a type. If E � E[a + 1/a] then E[J1/a] � E[J2/a] and if E[a + 1/a] � E then E[J2/a] �

E[J1/a].

Proof. Let us first show an intermediate lemma:

Lemma 16. Let I be an index. If an index variable a has at least one occurrence in I then I < I[a + 1/a].

By induction on I . On the base case, I = a so obviously a < a + 1. In the inductive case I = J1 + J2, if a has at least one
occurrence in I , then a has at least one occurrence in J1 or in J2. If a appears in J1 and J2, by induction hypothesis we
have J1 < J1[a + 1/a] and J2 < J2[a + 1/a]. So, we obtain directly I < I[a + 1/a]. If a appears in J1 and not in J2, then
we have J1 < J1[a + 1/a] and J2 = J2[a + 1/a]. Thus, we obtain I < I[a + 1/a]. The last case is symmetric. The case of the
multiplication is similar to the one for addition, using the fact that all indexes are at least 1 so multiplication conserves the
strict ordering.

Now we can prove Point 3 of Lemma 3 by induction on E .

• Suppose that E is a base type. The boolean case is direct, so we suppose that E = NI (the case for words is similar).
By Point 1 of Lemma 3, we have I[J1/a] ≤ I[J2/a]. This concludes the first case. Now, suppose that E[a + 1/a] � E . By
definition, this means I[a + 1/a] ≤ I . By Lemma 16, a have no occurrence in I . Thus, we have directly I[J2/a] ≤ I[J1/a],
and so E[J2/a] � E[J1/a].

• If E = D � D ′ . Suppose that E � E[a + 1/a]. By definition, this means that D ′ � D ′[a + 1/a] and D[a + 1/a] � D . By
induction hypothesis, we have D ′[J1/a] � D ′[J2/a] and D[J2/a] � D[J1/a]. Thus, we obtain E[J1/a] � E[J2/a]. The
other case E[a + 1/a] � E is similar.

• The case for E = D ⊗ D ′ is direct by induction hypothesis. �
A.1.3. Subtyping in proofs

We recall and show one case of Lemma 5.
If π � �
 t : D then for all �′, D ′ such that D � D ′ and �′ � �, we have a proof π ′ � �′
 t : D ′ with ω(π ′) ≤ ω(π).

Proof. We proceed by induction on the proof π . We only detail the case of the iteration for integers. Suppose that we have

D � E E[I/a] � F

σ � d�
 V : D � D[a + 1/a]
E � E[a/a + 1]

τ � �,d�
 t : D[1/a]
π�

�,d�
 itern(V , t) : NI � F

92 P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99
with ω(π) = ω(τ) + I · (ω(σ) + 1)[I/a]. Let �′, d�′, I ′, F ′ be such that NI � F � NI ′ � F ′ and �′, d�′ � �, d�. By definition,
we have F � F ′ and I ′ ≤ I . By induction hypothesis we have σ ′ �d�′
 V : D � D[a + 1/a] and τ ′ ��′, d�′
 t : D[1/a] with
ω(σ ′) ≤ ω(σ) and ω(τ ′) ≤ ω(τ). We give then the following proof π ′:

D � E E[I ′/a] � F ′

σ ′ � d�′
 V : D � D[a + 1/a]
E � E[a/a + 1]

τ ′ � �′,d�′
 t : D[1/a]
π ′�

�,d�
 itern(V , t) : NI ′ � F ′

with ω(π ′) = ω(τ ′) + I ′ · (ω(σ ′) + 1)[I ′/a]. Indeed, by Point 3 of Lemma 3, we have E[I ′/a] � E[I/a]. Thus, by transitivity,
we have:

E[I ′/a] � E[I/a] � F � F ′.

Moreover, ω(π ′) ≤ ω(π) since ω(τ ′) ≤ ω(τ), I ′ ≤ I , and

(ω(σ ′) + 1)[I ′/a] ≤ (ω(σ ′) + 1)[I/a] ≤ (ω(σ) + 1)[I/a]
by Point 1 of Lemma 3 for the first inequality, and since ω(σ ′) ≤ ω(σ), we got the second inequality by Point 1 of
Lemma 2. �
A.1.4. Main theorem of s�T

We recall and prove Theorem 2.
Suppose that τ � �
 t0 : D and t0 → t1 , then there is a proof τ ′ � �
 t1 : D such that ω(τ ′) < ω(τ).

Proof. By induction. We first consider the base-reduction case. Some cases are trivial and we will not develop them. Indeed
the if-rules can be proved with weakening (Lemma 1).

• If t0 = (λx.t)V , and t1 = t[V /x], we have a proof:

π � �1,d�, x : E
 t : D

�1,d�
 λx.t : E � D σ � �2,d�
 V : E
τ�

�1,�2,d�
 (λx.t)V : D

with ω(τ) = ω(σ) + 1 + ω(π).
Then by using the value substitution lemma (Lemma 6) with π and σ , we obtain a proof π ′ � �1, �2, d�
 t[V /x] : D .
Moreover, we have ω(π ′) ≤ ω(π) + ω(σ) < ω(τ). This concludes this case.

• If t0 = let x ⊗ y = V 0 ⊗ V 1 in t and t1 = t[V 0/x][V 1/y], we can conclude this case by using twice Lemma 6.
• If t0 = itern(V , V ′) zero and t1 = V ′ . We have a proof:

D � E E � E[a + 1/a]
σ1 � d�
 V : D � D[a + 1/a]

E[I/a] � F

σ2 � �,d�
 V ′ : D[1/a]
�,d�
 itern(V , V ′) : NI � F �′,d�
 zero : NI

τ�
�,�′,d�
 itern(V , V ′) zero : F

with ω(τ) = I + ω(σ2) + I · ω(σ1)[I/a] ≥ 1 + ω(σ2).
We have D[1/a] � E[1/a] � E[I/a] � F by Lemma 2 and Lemma 3 since 1 ≤ I . So, by subtyping and weakening
(Lemma 5 and Lemma 1), we have a proof σ ′

2 � �, �′, d�
 V ′ : F with ω(σ ′
2) ≤ ω(σ2) < ω(τ).

This concludes this case. The proof for the rule iterw with ε follows the same pattern.
• If t0 = itern(V , V ′) succ(W) and t1 = itern(V , V V ′) W . We have a proof:

D � E E � E[a + 1/a]
σ1 � d�
 V : D � D[a + 1/a]

E[I/a] � F

σ2 � �,d�
 V ′ : D[1/a]
�,d�
 itern(V , V ′) : NI � F

π � �′,d�
 W : N J J + 1 ≤ I

�′,d�
 succ(W) : NI
τ�

�,�′,d�
 itern(V , V ′) succ(W) : F

with ω(τ) = ω(π) + I + ω(σ2) + I · ω(σ1)[I/a].
We can construct a proof τ ′

0 for itern(V , V V ′). The proof is described in Fig. 10. This gives us a proof for t1.

τ ′
0 � �,d�
 itern(V , V V ′) : N J � F π � �′,d�
 W : N J

τ ′� ′ ′
�,� ,d�
 itern(V , V V)W : F

P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99 93
(1) σ1[a + 1/a] � d�
 V : D[a + 1/a] � D[a + 1/a][a + 1/a]
σ1[1/a] � d�
 V : D[1/a] � D[a + 1/a][1/a] σ2 � �,d�
 V ′ : D[1/a]

�,d�
 V V ′ : D[a + 1/a][1/a]
�,d�
 itern(V , V V ′) : N J � F

where (1) is: D[a + 1/a] � E[a + 1/a] E[a + 1/a] � E[a + 1/a][a + 1/a] E[a + 1/a][J/a] = E[J + 1/a] � E[I/a] � F

Fig. 10. A derivation for itern(V , V V ′).

with ω(τ ′) = ω(π) + J + ω(σ2) + ω(σ1)[1/a] + J · ω(σ1)[a + 1/a][J/a].
And we have ω(τ ′) ≤ ω(π) + J + ω(σ2) + (J + 1) · ω(σ1)[J + 1/a] so, since J + 1 ≤ I , we have ω(τ ′) < ω(π) + I +
ω(σ2) + I · ω(σ1)[I/a] = ω(τ).
The rules for iterw in the cases s0 and s1 follow the same pattern.

Now we need to verify that a reduction under context strictly decreases the weight. This can be proved directly by
structural induction on contexts. �
A.2. Adding polynomial time functions in EAL

As explained in the beginning of Section 3, we show informally that the proof of correctness in [18] is robust enough
to support the addition of polynomial time functions in the type N � N. This is a generic enrichment of EAL that does not
describe the layer computing polynomial time function.

We work in the classical EAL calculus described in Section 3. For any function f from integers to integers, we define a
new constructor f in the classical EAL-calculus, and a new reduction rule f n → f (n), saying that f applied to the Church
encoding of the integer n is reduced to the Church encoding of the integer f (n). We consider a cost to this reduction,
depending on the integer n and the function f , that we call C f (n). We consider that this constructor f has type N � N.

If this function f is a polynomial time computable function, we can bound the cost function C f (n) by a polynomial
function (n + 2)d for a certain d, and we can also bound the size of f (n) by the cost, and so f (n) ≤ (n + 2)d . The proof of
correctness relies on a measure μ on terms, and as in the present work, this measure yields a bound by computing tα(μ)

(see Section 3 or [18]).
Now if we look at the reduction rule, if we call μ(f) the measure for f , we go from μ(f) + (1, n + 1) to (0, (n + 2)d).

In order to take in consideration the cost of the reduction, we add it in the measure. Thus, we consider that in the right
part of the reduction, we have the measure (0, 2(n + 2)d). If we define μ(f) = (d, 1), this reduction follows the relation
Red defined in Section 3. Thus, as in the present work, we can prove that EAL enriched with constructors for polynomial
functions characterizes 2k-EXP.

A.3. Proofs in sEAL

A.3.1. Link between tα and Red
We first give some properties on tα and Red. The proofs are often only calculation. Let us first recall the definitions.
When α ≥ 1 and ∀i, xi ≥ 2 then:

tα() = 0 tα(x1, . . . , xn) = (α · xn)
2tα(x1,...,xn−1)

.

We have Red(μ, μ′) if and only if the following conditions are satisfied:

1. μ ≥ 2̃ and μ′ ≥ 2̃.
2. μ′ <lex μ, so formally there exists 0 ≤ i0 ≤ n, μ = (ω0, . . . , ωn) and μ′ = (ω0, . . . , ωi0−1, ω′

i0
, . . . , ω′

n), with ωi0 > ω′
i0

.

3. There exists d ∈N, 1 ≤ d ≤ (ωi0 − ω′
i0
) such that for all j > i0, we have ω′

j ≤ ω j · (ωi0+1)
d−1.

Lemma 17. If μ ≤ μ′ then tα(μ) ≤ tα(μ′).

This is just a simple consequence of the fact that the exponentiation is monotonic.

Lemma 18 (Shift). Let k ∈N∗ . Let μ = (ω0, . . . ,k · ωi−1,ωi, . . .ωn) and μ′ = (ω0, . . . ,ωi−1,k · ωi, . . .ωn). Then tα(μ′) ≤ tα(μ).

Proof. Let us define μ0 = (ω0, . . . , ωi−2).

k ≥ 1 so k ≤ 22k−1−1, then

k · ωi ≤ ωi · 22k−1−1 ≤ (ωi)
2k−1

since wi ≥ 2. So,

α · k · ωi ≤ (α · ωi)
2(α·(k−1)·ωi−1)2tα(μ0)

.

94 P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99
(α · k · ωi)
2(α·ωi−1)2tα(μ0)

≤ (α · ωi)
2(α·(k−1)·ωi−1)2tα(μ0)

·2(α·ωi−1)2tα(μ0)

and so,

tα(μ0, (ωi−1,k · ωi)) ≤ (α · ωi)
2(α·k·ωi−1)2tα(μ0)

= tα(μ0, (k · ωi−1,ωi)).

We can now obtain tα(μ′) ≤ tα(μ) by monotonicity of exponential. �
Lemma 19. If 2̃ ≤ μ′ < μ then Red(μ, μ′).

Proof. Take d = 1 and the proof is simple. �
Lemma 20. If Red(μ, μ′) then for all μ0 , we have Red(μ + μ0, μ′ + μ0).

Proof. The conditions 1 and 2 in the definition of Red(μ + μ0, μ′ + μ0) are given by the hypothesis Red(μ, μ′). We keep
the notations ω j, ω′

j, i0, d.

1 ≤ d ≤ ωi0 − ω′
i0

so 1 ≤ d ≤ (ωi0 + μ0(i0)) − (ω′
i0

+ μ0(i0)).

Let j > i0, we have:

ω′
j + μ0(j) ≤ ω j · (ωi0+1)

d−1 + μ0(j) ≤ (ω j + μ0(j)) · (ωi0+1 + μ0(i0 + 1))d−1

since ωi0+1 ≥ 1. �
We now want to prove Theorem 4. First let us recall the statement of this theorem:
Let μ, μ′ ∈Nn+1 and α ≥ n, α ≥ 1. If Red(μ, μ′) then tα(μ′) < tα(μ).

Proof. Suppose Red(μ, μ′). Using the notations from the definition of Red, we have:

μ ≥ (ω0, . . . ,ω
′
i0

+ d,ωi0+1, . . . ,ωn) and we have

μ′ ≤ (ω0, . . . ,ωi0−1,ω
′
i0
,ωi0+1 · (ωi0+1)

d−1, . . . ,ωn · (ωi0+1)
d−1).

Let us call μ0 = (ω0, . . . , ωi0−1).

α · d ≥ 1 so α · d < 2α·d then,

as ωi0+1 ≥ 2, we have (ωi0+1)
α·d < (ωi0+1)

2α·d
so,

α · (ωi0+1)
α·d < (α · ωi0+1)

2(α·d)2tα(μ0)

and so

(α · (ωi0+1)
α·d)2

(α·ω′
i0

)2tα(μ0)

< (α · ωi0+1)
2
(α·(d+ω′

i0
))2tα(μ0)

.

tα(ω0, . . . ,ωi0−1,ω
′
i0
, (ωi0+1)

α·d) < tα(ω0, . . . ,ωi0−1,ω
′
i0

+ d,ωi0+1).

By Lemma 17, since ωi0+1 · (ωi0+1)
(n−i0)(d−1) ≤ (ωi0+1)

α·d , and by monotonicity of the exponential, we obtain:

tα(ω0, . . . ,ωi0−1,ω
′
i0
,ωi0+1 · (ωi0+1)

(n−i0)(d−1), . . . ,ωn) < tα(ω0, . . . ,ω
′
i0

+ d,ωi0+1, . . . ,ωn).

Using several times the shift lemma (Lemma 18), we obtain:

tα(ω0, . . . ,ωi0−1,ω
′
i0
,ωi0+1 · (ωi0+1)

d−1, . . . ,ωn · (ωi0+1)
d−1) < tα(ω0, . . . ,ω

′
i0

+ d,ωi0+1, . . . ,ωn).

Again by Lemma 17, we obtain tα(μ′) < tα(μ). �
A.3.2. Main theorem of sEAL

In this section, we prove the main theorem for the enriched EAL calculus, Theorem 5:
Let τ � � |
 M0 : T and M0 → M1 . Let α be an integer equal or greater than the depth of τ . Then there is a proof τ ′ � � |

M1 : T such that Red(μα(τ) + 2̃, μα(τ ′) + 2̃). Moreover, the depth of τ ′ is smaller than the depth of τ .

Proof. To begin with, we show that we can consider that the first rule of τ is not an elimination or an introduction of
quantification.

P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99 95
Lemma 21. Let τ � � |
 M0 : T be a proof that does not start with an introduction or elimination of quantifier, and M0 → M1 . Let
α be an integer equal or greater than the depth of τ . Then there is a proof τ ′ �� |
 M1 : T such that Red(μα(τ) + 2̃, μα(τ ′) + 2̃).
Moreover, the depth of τ ′ is smaller than the depth of τ .

Suppose that we proved Lemma 21. We can then prove Theorem 5 by induction on τ .

• If τ does not start with an introduction or elimination of quantification, then by Lemma 21 we can conclude this case.
• If τ is:

σ � � |
 M0 : T α fresh in �,

� |
 M0 : ∀α.T

with μ(τ) = μ(σ). By induction hypothesis with σ , there is a proof σ ′ � � |
 M1 : T such that Red(μα(σ) +
2̃, μα(σ ′) + 2̃). Moreover, the depth of σ ′ is smaller than the depth of σ .
We can construct the proof τ ′:

σ ′ � � |
 M1 : T α fresh in �,

� |
 M1 : ∀α.T

And we have μ(τ ′) = μ(σ ′). We can conclude this case. The case of elimination of ∀ is similar.

Now, we prove Lemma 21. We first consider base reductions without contexts. With the generation lemma (Lemma 12),
the case for the if-constructors are straightforward, it is a simple consequence of Lemma 19. We detail the other cases:

• If M0 = (λx.M)M ′ and M1 = M[M ′/x], we have a proof:

π � �1, x : T ′ |
 M : T

�1 |
 λx.M : T ′ � T σ � �2 |
 M ′ : T ′
τ�

�1,�2 |
 (λx.M)M ′ : T

The double line corresponds to the generation lemma (Lemma 12). We will use this notation everywhere in the proof.

∀n ∈N,μn(τ) = μn(σ) + μn(π) + 2 · 10.

The proof τ ′ � �1, �2 |
 M[M ′/x] : T is given by Lemma 9. As a consequence, we have:

∀n ∈N,μn(τ ′) ≤ μn(π) + μn(σ) so, ∀n ∈ N,μn(τ
′) < μn(τ).

Then, it is still true for n = α ≥ depth(τ) and the depth of τ ′ is smaller than the depth of τ . Moreover, by Lemma 19,
we obtain directly that Red(μα(τ) + 2̃,μα(τ ′) + 2̃).

• If M0 = let !x =!M ′ in M and M1 = M[M ′/x] then we have a proof:

σ � · |
 M ′ : T ′

�1 | ′, []
!M ′ :!T ′ π � �2 | ′, [], x : [T ′]
 M : T
τ�

�1,�2 | ′, []
 let !x =!M ′ in M : T

∀n ∈N,μn(τ) = μn(π) + (2,μn−1(σ)).

By Lemma 11, we obtain a proof π ′ � �2 | ′, []
 M[M ′/x] : T , with:

∀n ∈N,μn(π ′) ≤ (ω0(π), (μ1
n(π) + ω1(π) · μn−1(σ))).

By weakening we have τ ′ � �1, �2 | ′, []
 M[M ′/x] : T . By the precedent upper-bound, we obtain depth(τ ′) ≤
depth(τ). Moreover, ω0(τ) −ω0(τ

′) ≥ 2, and so for α ≥ depth(τ) ≥ 0, we have μα(τ ′) <lex μα(τ). Finally, for α ≥ j > 0,
we have:

ω j(τ
′) + 2 ≤ ω j(π) + ω1(π) · ω j−1(σ) + 2.

ω j(τ
′) + 2 ≤ (ω j(π) + ω j−1(σ) + 2) · (ω1(π) + ω0(σ) + 2).

ω j(τ
′) + 2 ≤ (ω j(τ) + 2) · (ω1(τ) + 2).

And so we have indeed Red(μα(τ) + 2̃, μα(τ ′) + 2̃).
• If M0 = let x ⊗ y = M ⊗ M ′ in N and M1 = N[M/x][M ′/y], we have a proof:

96 P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99
σ � � |
 M : T σ ′ � �′ |
 M ′ : T ′

�,�′ |
 M ⊗ M ′ : T ⊗ T ′ π � �′′, x : T , y : T ′ |
 N : T ′′
τ�

�,�′,�′′ |
 let x ⊗ y = M ⊗ M ′ in N : T ′′

∀n ∈N,μn(τ) = μn(π) + μn(σ) + μn(σ
′) + 2 · 10.

Using twice Lemma 9, we obtain a proof τ ′ � �,�′,�′′ |
 N[M/x][M ′/y] : T ′′ with:

∀n ∈N,μn(τ
′) ≤ μn(π) + μn(σ) + μn(σ

′) < μn(τ).

So depth(τ ′) ≤ depth(τ) and for α ≥ depth(τ), μα(τ ′) < μα(τ). By Lemma 19, we have Red(μα(τ) + 2̃, μα(τ ′) + 2̃).
• If M0 = iter!

N(!M, !M ′) k and M1 =!(Mk M ′), then we have a proof:

σ1 � · |
 M : T � T

�1 | ′, []
!M :!(T � T)

σ2 � · |
 M ′ : T

�2 | ′, []
!M ′ :!T
�1,�2 | ′, []
 iter!

N(!M, !M ′) : N �!T σ � �3 | ′, []
 k : N
τ�

�1,�2,�3 | ′, []
 iter!
N(!M, !M ′)k :!T

∀n ∈N,μn(τ) = μn(σ) + (4,μn−1(σ1) + μn−1(σ2)).

Also note that ∀n ∈N, μn(σ) = (k + 1) · 11. We can construct τ ′:

σ1 � · |
 M : T � T

σ1 � · |
 M : T � T σ2 � · |
 M ′ : T
·
·
·

· |
 Mk−1M ′ : T

· |
 Mk M ′ : T
τ ′�

�1,�2,�3 | ′, []
!(Mk M ′) :!T
∀n ∈N,μn(τ

′) = k · 11 + (1,k · μn−1(σ1) + μn−1(σ2)).

We can see that depth(τ ′) ≤ depth(τ). Furthermore, ω0(τ) − ω0(τ
′) ≥ 2, so for α ≥ depth(τ) ≥ 0, we have μα(τ ′) <lex

μα(τ). We have ω1(τ
′) + 2 ≤ (ω1(τ) + 2)2, indeed:

k · (1 + ω0(σ1)) + ω0(σ2) + 2 ≤ (k + 1 + ω0(σ1) + ω0(σ2) + 2)2.

For 1 < j ≤ α, ω j(τ
′) + 2 ≤ (ω j(τ) + 2)(ω1(τ) + 2). Indeed:

k · ω j−1(σ1) + ω j−1(σ2) + 2 ≤ (ω j−1(σ1) + ω j−1(σ2) + 2)(k + 1 + ω0(σ1) + ω0(σ2) + 2).

We can conclude Red(μα(τ) + 2̃, μα(τ ′) + 2̃). The proof for the rule iter!
W follows the same pattern.

• If M0 = [λxk . . . x1.t](M ′
1, . . . , M

′
k−1, v) and M1 = [λxk−1 . . . x1.t[v/xk]](M ′

1, . . . , M
′
k−1), then we have the following proof.

∀1 ≤ i ≤ (k − 1),σi � �i |
 M ′
i : Ai σ � �k |
 v : Ak π � xk : A(ak)

k , . . . , x1 : A(a1)
1
s�T t : U

τ�
�,�1, . . . �k |
 [λxk . . . x1.t](M ′

1, . . . , M ′
k−1,v) : type(U)

Note that, with the generation lemma (Lemma 12), the proof σ induces that v is either an actual integer m, an actual
word w or an actual boolean tt or ff. Moreover, ∀n ∈N, μn(σ) = |v| · 11 and

∀n ∈N,μn(τ) =
k−1∑

i=1

μn(σi) + |v| · 11 + k(d(ω(π) + I) + 1) · 10 + ((ω(π) + I)[1/b1] · · · [1/bl] + 1) · 11

where ind(U) = I and {b1, . . . , bl} = Var(I) ∪ Var(ω(π)). From the proof π , we can construct by Lemma 2 a proof

π [|v|/ak] � xk : A
(|v|)
k , xk−1 : A

(ak−1)

k−1 , . . . , x1 : A(a1)
1
 t : U [|v|/ak].

Furthermore, we can construct a proof σ ′ � ·
s�T v : A
|v|
k . By Lemma 6,

π ′ � xk−1 : A
(ak−1)

k−1 , . . . , x1 : A(a1)
1
 t[v/xk] : U [|v|/ak]

and ω(π ′) ≤ ω(π)[|v|/ak]. We can now construct the proof τ ′:

P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99 97
∀1 ≤ i ≤ (k − 1),σi � �i |
 M ′
i : Ai π ′ � xk−1 : A

(ak−1)

k−1 , . . . , x1 : A(a1)
1
s�T t[v/xk] : U [|v|/ak]

τ ′�
�,�k,�1, . . . �k−1 |
 [λxk−1 . . . x1.t[v/xk]](M ′

1, . . . , M ′
k−1) : type(U)

Let us denote {b′
1, . . . , b

′
l′ } = Var(I) ∪ Var(ω(π)) ∪ Var(ω(π ′)).

∀n ∈N,μn(τ ′) =
k−1∑

i=1

μn(σi)+

(k − 1)(d(ω(π ′) + I[|v|/ak]) + 1) · 10 + ((ω(π ′) + I[|v|/ak])[1/b′
1] · · · [1/b′

l′] + 1) · 11.

With this, we can first see that depth(τ ′) ≤ depth(τ). Moreover, by Theorem 3, since ω(π ′) + I[|v|/ak] ≤ (I +
ω(π))[|v|/ak], we have:

d(ω(π ′) + I[|v|/ak]) ≤ d((I + ω(π))[|v|/ak]) ≤ d(I + ω(π)).

By Theorem 3, (I + ω(π))[|v|/ak] ≤ |v|d(I+ω(π)) · (I + ω(π))[1/ak].
So, (I + ω(π))[|v|/ak][1/b′

1, . . . ,b′
l′] ≤ |v|d(I+ω(π)) · (I + ω(π))[1/b′

1, . . . ,b′
l′]

by Lemma 2 (the substitution for ak is either one of the b′ by definition, or irrelevant if ak does not appear in the
indexes). Now from those results, we have:

∀n ∈N,μn(τ ′) ≤
k−1∑

i=1

μn(σi) + (k − 1)(d(ω(π) + I) + 1) · 10 + (|v|d(I+ω(π)) · (I + ω(π))[1/b′
1, . . . ,b′

l′] + 1)11.

Now we can prove Red(μα(τ) + 2̃, μα(τ ′) + 2̃):
By the precedent bound, ω0(τ) − ω0(τ

′) ≥ d(ω(π) + I) + 1. Then:

ω1(τ
′) + 2 ≤

k−1∑

i=1

ω1(σi) + |v|d(I+ω(π)) · (I + ω(π))[1/b′
1, . . . ,b′

l′] + 3.

ω1(τ
′) + 2 ≤ (

k−1∑

i=1

ω1(σi) + |v| + (ω(π) + I)[1/b′
1, . . . ,b′

l′] + 3)d(ω(π)+I)+1.

ω1(τ
′) + 2 ≤ (ω1(τ) + 2) · (ω1(τ) + 2)d(ω(π)+I).

And for 1 < j ≤ α,

ω j(τ
′) + 2 ≤

k−1∑

i=1

ω j(σi) + 2 = ω j(τ) + 2 ≤ (ω j(τ) + 2)(ω1(τ) + 2)d(ω(π)+I).

This proves Red(μα(τ) + 2̃, μα(τ ′) + 2̃).
• If M0 = [t0]() and M1 = [t1]() with t0 → t1 in s�T. We have a proof:

π � ·
s�T t0 : U
τ�

� |
 [t0]() : type(U)

∀n ∈N,μn(τ) = (1 + (ω(π) + I)[1/b1, . . . ,bl]) · 11

where ind(U) = I and {b1, . . . , bl} = Var(I) ∪ Var(ω(π)). By Theorem 2, the main theorem of s�T, we have a proof
π ′ � ·
s�T t1 : U with ω(π ′) < ω(π). So we can construct the following proof:

π ′ � ·
s�T t1 : AI

τ ′�
� |
 [t1]() : A

Let us denote {b′
1, . . . , b

′
l′ } all the index variables in I , ω(π) and ω(π ′).

∀n ∈N, μn(τ ′) = (1 + (ω(π ′) + I)[1/b′
1, . . . , b

′
l′]) · 11.

We directly see that the depth does not increase. Remark that the depth of τ is greater than 1 in this case.
We have by Lemma 2, (ω(π ′) + I)[1/b′

1, . . . , b
′
l′] < (ω(π) + I)[1/b′

1, . . . , b
′
l′].

And so, for α ≥ depth(τ) ≥ 1, μα(τ ′) < μα(τ), and so we have Red(μα(τ) + 2̃, μα(τ ′) + 2̃).
Remark that as opposed to all the precedent cases, μ0(τ) and μ0(τ

′) are equal, and so we need to look at position 1
to see that the measure strictly decreases. This remark is essential in the proof of Lemma 13.

98 P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99
• If M0 = [v]() and M1 = v. The fact that M0 can be typed by τ indicates that v is either an actual integer, a word
or a boolean. With this remark, the typing τ ′ of M1 is just the usual typing for those values. Moreover, we know
the weight in s�T and the measure in sEAL for the typing proof of a value, in s�T the weight is 0 and in sEAL the
measure is |v| · 11. Furthermore, if π � ·
s�T v : U , then we know that |v| ≤ ind(U). With this, we have μn(τ) =
(1 + I[1/Var(I)]) · 11 and μn(τ ′) = |v| · 11. By Lemma 2, we have |v| ≤ I[1/Var(I)] and so for n ≥ 1, μn(τ ′) < μn(τ).
This gives us Red(μα(τ) + 2̃, μα(τ ′) + 2̃). And the fact that the depth does not increase is direct.
Remark that as the precedent case, we need to look at position 1 to see that the measure strictly decreases.

Now we need to work on the reductions under a context. For this we work by induction on contexts, and what we have
done previously is the base case. For any inductive case of context except the ! case, the proof is straightforward, it is a
direct application of the induction hypothesis.

When the context has the form C =!C ′ , the notion of depth is crucial. Indeed, suppose M → M ′ , M0 =!M and M1 =!M ′ .
With the proof τ for M0, we obtain a proof π for M , this gives us by induction hypothesis a proof π ′ for M ′ , and this gives
us a proof τ ′ for M1. Moreover,

∀n ∈N,μn(τ) = (1,μn−1(π)) and μn(τ
′) = (1,μn−1(π

′)).

As depth(π ′) ≤ depth(π) we have:

depth(τ ′) = depth(π ′) + 1 ≤ depth(π) + 1 = depth(τ).

And for α ≥ depth(τ), then (α − 1) ≥ depth(π). By induction hypothesis, we have Red(μα−1(π) + 2̃,μα−1(π
′) + 2̃). From

this, we can easily deduce Red(μα(τ) + 2̃,μα(τ ′) + 2̃).
Remark that this proof shows that if we had Red(μn(π) + 2̃, μn(π ′) + 2̃) we obtain Red(μn+1(τ) + 2̃, μn+1(τ

′) + 2̃).
This remark is important for the proof of Lemma 13. �
A.4. Simulation of a Turing machine in sEAL

In order to prove Theorem 8, we show the converse of Lemma 15. Formally, we want to show the following lemma.

Lemma 22. Let k be an integer. Let T M be a Turing machine on binary words such that, for an input word w, T M works in time
2P (|w|)

2k , where P is a polynomial function. Then, T M can be simulated in sEAL by a term of type !W �!k+1B.

The first thing we prove is the existence of a term in s�T to simulate n steps of a deterministic Turing-machine on a
word w . Suppose given two variables w : Waw and n : Nan , we note Confb the type Waw +b ⊗ B ⊗ Waw +b ⊗ Bq , with q an
integer and Bq being q tensors of booleans. This type represents a configuration on a Turing machine after b steps, with
Bq coding the state, and then w0 ⊗ x ⊗ w1 represents the tape, with x being the head, w0 represents the reverse of the
word before b, and w1 represents the word after x. We then define some terms in s�T that works with this encoding. First
we have a term init such that w : Waw , n : Nan
 init : Conf1 and init computes the initial configuration of the Turing
machine. Then, we have a term step with ·
 step : Confb � Confb+1 that computes the result of the transition function
from a configuration to the next one, and finally we have a term final with ·
 final : Confb � B verifying if the final
configuration is accepted or not. More precisely, this is given by:

• Given an initial state s of size q, we can code this state in a term s : Bq . Then we pose:

init= ε ⊗ (ifw(λw ′.ff⊗ w ′, λw ′.tt⊗ w ′,ff⊗ ε) w) ⊗ s.

• Given for each state s of size q and boolean b a transition function δ(b, s) ⊂ {le f t, right, stay} × {0, 1} × {0, 1}q , we can
construct the term step:

step= λc.let x ⊗ b ⊗ y ⊗ s = c in (caseq+1(t0q+1 , . . . , t1q+1)) (b ⊗ s).

The term case is a notation for a sequence of conditionals on the tensor of booleans of type B(q+1) , in this case b ⊗ s.
For a given boolean b and a state s, we define tb⊗s according to δ(b, s). For example, if δ(b, s) = (le f t, b′, s′), we define:

tb⊗s = (ifw(λw.w ⊗ ff, λw.w ⊗ tt, ε ⊗ ff) x) ⊗ sb′(y) ⊗ s′.

• Given for states of size q a function accept : Bq → B (constructed with caseq), we can construct the term final:

final= λc.let x ⊗ b ⊗ y ⊗ s = c in accept(s).

P. Baillot, A. Ghyselen / Theoretical Computer Science 813 (2020) 70–99 99
Now, suppose given a one-tape deterministic Turing machine T M on binary words such that for words w , T M works in
time 2P (|w|)

2k . As usual, we suppose that T M has an infinite tape, this means that on an input w , the Turing-machine can read
outside the bound of w and in this case, it reads a 0. We can compute a term in sEAL tT M such that · | ·
 tT M :!W �!k+1B
and on an input !w , the term reduces to the term !k+1b with b = tt if w is accepted by T M , and b = ff otherwise. For
this, we show how to decompose the work in order to construct this term.

1. We duplicate the word given in input.
2. With one of those words, we compute the length of the word, and we keep the other one as a copy.
3. Now that we have the length, we can compute 2P (|w|)

2k . So we obtain !w⊗!k+1n with n representing 2P (|w|)
2k . By using

the coercion, we obtain !k+1 w⊗!k+1n. We can then give this word and this integer as an input for a s�T program using
the s�T-call of sEAL.

4. In s�T, by using the previously defined term init with the word w : Waw and the integer n : Nan , we obtain a config-
uration Ci of type Conf1 representing the initial tape of the Turing machine.

5. By iterating n times (using the constructor itern) the term ·
 step : Confb � Confb+1 , from Ci , we obtain a term of
type Confan . By definition, this term is a representation of the tape of the Turing machine after n steps, that is to say at
the end of the computation.

6. Finally, with the term final we can extract the result of the computation as a boolean in s�T.
7. As the word and the integer we used in the s�T-call had the type !k+1W⊗!k+1N, we obtain in sEAL the result of the

computation as a boolean of type !k+1B.

In conclusion, we can simulate T M by a term of type !W �!k+1B.

References

[1] S. Bellantoni, S. Cook, A new recursion-theoretic characterization of the polytime functions, in: Proceedings of the Twenty-Fourth Annual ACM Sympo-
sium on Theory of Computing, ACM, 1992, pp. 283–293.

[2] M. Hofmann, A mixed modal/linear lambda calculus with applications to Bellantoni-Cook safe recursion, in: International Workshop on Computer
Science Logic, Springer, 1997, pp. 275–294.

[3] U. Dal Lago, P.P. Toldin, A higher-order characterization of probabilistic polynomial time, in: International Workshop on Foundational and Practical
Aspects of Resource Analysis, Springer, 2011, pp. 1–18.

[4] J. Mitchell, M. Mitchell, A. Scedrov, A linguistic characterization of bounded oracle computation and probabilistic polynomial time, in: 39th Annual
Symposium on Foundations of Computer Science, 1998. Proceedings, IEEE, 1998, pp. 725–733.

[5] J.-Y. Girard, Light linear logic, Inf. Comput. 143 (1998) 175–204.
[6] P. Baillot, On the expressivity of elementary linear logic: characterizing ptime and an exponential time hierarchy, Inf. Comput. 241 (2015) 3–31.
[7] V. Danos, J.-B. Joinet, Linear logic and elementary time, Inf. Comput. 183 (2003) 123–137.
[8] M. Hofmann, Linear types and non-size-increasing polynomial time computation, Inf. Comput. 183 (2003) 57–85.
[9] M. Hofmann, S. Jost, Static prediction of heap space usage for first-order functional programs, in: 30th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL’11, Proceedings, ACM, 2003, pp. 185–197.
[10] J. Hoffmann, M. Hofmann, Amortized resource analysis with polynomial potential, in: 19th Euro. Symp. on Prog. (ESOP10), Springer, 2010, pp. 287–306.
[11] J. Hoffmann, K. Aehlig, M. Hofmann, Multivariate amortized resource analysis, in: 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL’11, Proceedings, ACM, 2011.
[12] S. Jost, K. Hammond, H. Loidl, M. Hofmann, Static determination of quantitative resource usage for higher-order programs, in: Proceedings of the 37th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL, 2010, 2010, pp. 223–236.
[13] G. Bonfante, J.-Y. Marion, J.-Y. Moyen, Quasi-interpretations a way to control resources, Theor. Comput. Sci. 412 (2011) 2776–2796.
[14] P. Baillot, U. Dal Lago, Higher-order interpretations and program complexity, Inf. Comput. 248 (2016) 56–81.
[15] P. Baillot, G. Barthe, U.D. Lago, Implicit computational complexity of subrecursive definitions and applications to cryptographic proofs, in: Proceedings

of Logic for Programming, Artificial Intelligence, and Reasoning - 20th International Conference, LPAR-20 2015, in: LNCS, vol. 9450, Springer, 2015,
pp. 203–218.

[16] P. Baillot, G. Barthe, U. Dal Lago, Implicit Computational Complexity of Subrecursive Definitions and Applications to Cryptographic Proofs (Long version),
Research Report, ENS Lyon, 2015, https://hal .archives -ouvertes .fr /hal -01197456.

[17] P. Baillot, M. Gaboardi, V. Mogbil, A polytime functional language from light linear logic, in: European Symposium on Programming, Springer, 2010,
pp. 104–124.

[18] A. Madet, R.M. Amadio, An elementary affine λ-calculus with multithreading and side effects, in: International Conference on Typed Lambda Calculi
and Applications, Springer, 2011, pp. 138–152.

[19] U. Dal Lago, M. Gaboardi, Linear dependent types and relative completeness, Log. Methods Comput. Sci. 8 (2011).
[20] S. Alves, M. Fernández, M. Florido, I. Mackie, The power of linear functions, in: Computer Science Logic, Springer, Berlin, Heidelberg, 2006, pp. 119–134.
[21] J. Hughes, L. Pareto, A. Sabry, Proving the correctness of reactive systems using sized types, in: Conference Record of POPL’96: The 23rd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, 1996, pp. 410–423.
[22] M. Avanzini, U. Dal Lago, Automating sized-type inference for complexity analysis, Proc. ACM Program. Lang. 1 (2017) 43, 29 pp.
[23] P. Baillot, A. Ghyselen, Combining linear logic and size types for implicit complexity, in: 27th EACSL Annual Conference on Computer Science Logic

(CSL 2018), in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 119, 2018, chapter 9, 21 pp.
[24] U. Dal Lago, B. Petit, Linear dependent types in a call-by-value scenario, Sci. Comput. Program. 84 (2014) 77–100.
[25] K. Terui, Light affine lambda calculus and polytime strong normalization, in: Logic in Computer Science, 2001. 16th Annual IEEE Symposium on

Proceedings, IEEE, 2001, pp. 209–220.
[26] P. Baillot, E. De Benedetti, S.R. Della Rocca, Characterizing polynomial and exponential complexity classes in elementary lambda-calculus, in: IFIP

International Conference on Theoretical Computer Science, Springer, 2014, pp. 151–163.
[27] U. Dal Lago, B. Petit, The geometry of types, in: The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL’13,

Proceedings, ACM, 2013, pp. 167–178.
[28] P. Baillot, K. Terui, A feasible algorithm for typing in elementary affine logic, in: Proceedings of TLCA, vol. 5, Springer, 2005, pp. 55–70.

http://refhub.elsevier.com/S0304-3975(19)30583-3/bib62656C6C616E746F6E69313939326E6577s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib62656C6C616E746F6E69313939326E6577s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib686F666D616E6E313939376D69786564s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib686F666D616E6E313939376D69786564s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib64616C32303131686967686572s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib64616C32303131686967686572s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib6D69746368656C6C313939386C696E67756973746963s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib6D69746368656C6C313939386C696E67756973746963s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib676972617264313939386C69676874s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib6261696C6C6F7432303135657870726573736976697479s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib64616E6F73323030336C696E656172s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib686F666D616E6E323030336C696E656172s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib686F666D616E6E3033s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib686F666D616E6E3033s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib486F66666D616E6E3130s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib486F66666D616E6E3131s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib486F66666D616E6E3131s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib4A6F73743130s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib4A6F73743130s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib626F6E66616E7465323031317175617369s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib6261696C6C6F7432303136686967686572s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib6261696C6C6F74323031354C504152s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib6261696C6C6F74323031354C504152s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib6261696C6C6F74323031354C504152s1
https://hal.archives-ouvertes.fr/hal-01197456
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib6261696C6C6F7432303130706F6C7974696D65s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib6261696C6C6F7432303130706F6C7974696D65s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib6D6164657432303131656C656D656E74617279s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib6D6164657432303131656C656D656E74617279s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib44424C503A6A6F75726E616C732F636F72722F6162732D313130342D30313933s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib416C7665736574416C506F7765724C696E65617246756E6374696F6E73s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib44424C503A636F6E662F706F706C2F48756768657350533936s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib44424C503A636F6E662F706F706C2F48756768657350533936s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib44424C503A6A6F75726E616C732F7061636D706C2F4176616E7A696E694C3137s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib4261696C6C6F7447687973656C656E436F6D62696E696E674C4C53697A655479706573s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib4261696C6C6F7447687973656C656E436F6D62696E696E674C4C53697A655479706573s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib64616C323031346C696E656172s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib7465727569323030316C69676874s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib7465727569323030316C69676874s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib6261696C6C6F7432303134636861726163746572697A696E67s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib6261696C6C6F7432303134636861726163746572697A696E67s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib64616C3230313367656F6D65747279s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib64616C3230313367656F6D65747279s1
http://refhub.elsevier.com/S0304-3975(19)30583-3/bib6261696C6C6F74323030356665617369626C65s1

	Combining linear logic and size types for implicit complexity
	1 Introduction
	2 Presentation of slT and control of the reduction procedure
	2.1 Syntax of slT and type system
	2.2 Examples in slT
	2.3 Some intermediate lemmas for the subject reduction
	2.4 Subject reduction and upper bound
	2.5 Polynomial indexes and degree

	3 Elementary afﬁne logic and sizes
	3.1 An EAL-calculus
	3.1.1 Examples of terms in EAL and church integers
	3.1.2 Intensional expressivity

	3.2 Syntax and type system for sEAL
	3.2.1 Terms and reductions
	3.2.2 Types

	3.3 Subject reduction and measure

	4 Programming with sEAL
	4.1 Simple examples in sEAL
	4.2 Example: testing satisﬁability of a propositional formula
	4.3 Solving the SUBSET SUM problem

	5 Complexity results: characterization of 2k-EXP and 2k-FEXP
	6 Conclusion
	Acknowledgements
	References

