
On Model-Checking Higher-Order E�ectful Programs∗

UGO DAL LAGO†, University of Bologna, Italy

ALEXIS GHYSELEN, University of Bologna, Italy

Model-checking is one of the most powerful techniques for verifying systems and programs, which since the

pioneering results by Knapik et al., Ong, and Kobayashi, is known to be applicable to functional programs with

higher-order types against properties expressed by formulas of monadic second-order logic. What happens

when the program in question, in addition to higher-order functions, also exhibits algebraic e�ects such as

probabilistic choice or global store? The results in the literature range from those, mostly positive, about

nondeterministic e�ects, to those about probabilistic e�ects, in the presence of which even mere reachability

becomes undecidable. This work takes a fresh and general look at the problem, �rst of all showing that there

is an elegant and natural way of viewing higher-order programs producing algebraic e�ects as ordinary

higher-order recursion schemes. We then move on to consider e�ect handlers, showing that in their presence

the model checking problem is bound to be undecidable in the general case, while it stays decidable when

handlers have a simple syntactic form, still su�cient to capture so-called generic e�ects. Along the way, we

hint at how a general speci�cation language could look like, this way justifying some of the results in the

literature, and deriving new ones.

CCS Concepts: • Theory of computation→ Program veri�cation; Veri�cation by model checking.

Additional Key Words and Phrases: higher-order recursion schemes, algebraic e�ects, model checking, e�ect

handlers

ACM Reference Format:

Ugo Dal Lago and Alexis Ghyselen. 2024. On Model-Checking Higher-Order E�ectful Programs. Proc. ACM

Program. Lang. 8, POPL, Article 87 (January 2024), 29 pages. https://doi.org/10.1145/3632929

1 INTRODUCTION

Verifying the correctness of programs endowed with higher-order functions is a very challenging
problem, which can be addressed with various methodologies, from type systems [Davies and
Pfenning 2000; Freeman and Pfenning 1991; Hughes et al. 1996] to program logics [Brady 2013;
Jung et al. 2018], from symbolic execution [King 1976; Tobin-Hochstadt and Van Horn 2012] to
veri�ed compilation [Leroy 2009]. An approach with some peculiarities is that of higher-order
model checking (HOMC in the following), which consists in seeing the program at hand as a
structure, then checking whether it renders a logical formula capturing the desired property true,
namely whether it is a model of it. Saying it another way, HOMC can be seen as the application of
the model checking paradigm [Clarke 1997; Clarke et al. 2018] to higher-order programs. One of
the characteristics of this approach is that, contrary to most others, it is both sound and complete.
As a consequence, the kind of languages to which the methodology can be applied are most often

∗The authors are supported by the ERC CoG “Di�erential Program Semantics”, GA 818616.
†Both authors contributed equally to this research.

Authors’ addresses: Ugo Dal Lago, ugo.dallago@unibo.it, University of Bologna, Via Zamboni, 33, Bologna, BO, Italy, 40126;

Alexis Ghyselen, alexis.ghyselen@unibo.it, University of Bologna, Via Zamboni, 33, Bologna, BO, Italy, 40126.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART87

https://doi.org/10.1145/3632929

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0001-9200-070X
HTTPS://ORCID.ORG/0000-0001-9767-2011
https://doi.org/10.1145/3632929
https://orcid.org/0000-0001-9200-070X
https://orcid.org/0000-0001-9767-2011
https://doi.org/10.1145/3632929
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3632929&domain=pdf&date_stamp=2024-01-05

87:2 Dal Lago and Ghyselen

not Turing-complete, the underlying veri�cation problem being undecidable even for very simple
logics.
The feasibility of higher-order model checking was scrutinized in the early 2000s, the objec-

tive being to extend classic results about model checking recursion schemes [Courcelle 1995] to
higher-order generalizations of the latter. The results obtained were initially very interesting but
partial [Knapik et al. 2001, 2002], only concerning certain restricted forms of higher-order recursion
schemes. The quest came to an end in 2006 with Ong’s groundbreaking result [Ong 2006] on the
decidability of the model checking problem for trees generated by general higher-order recursion
schemes against formulas of MSO (or, equivalently, of formulas the `-calculus or alternating parity
tree automata [Emerson and Jutla 1991; Grädel et al. 2003]). This result was followed by many
other ones [Broadbent et al. 2010; Carayol and Serre 2012; Hague et al. 2008; Kobayashi 2009;
Kobayashi and Ong 2009; Salvati and Walukiewicz 2014; Walukiewicz 2016], whose goal was that
of understanding the deep computational nature of the problem, at the same time generalizing
the decidability result and building concrete veri�cation tools [Broadbent and Kobayashi 2013;
Kobayashi 2011; Neatherway et al. 2012; Ramsay et al. 2014]. Readers are invited to refer to [Ong
2015] for an overview.
Among the various extensions to the HOMC problem considered in the literature, we should

certainly mention extensions aimed at dealing with higher-order recursion schemes subject to
more permissive type disciplines than that of simple types, namely the one to which Ong’s classic
result applies. As an example, higher-order recursion schemes with recursive types have been
recently considered [Kobayashi and Igarashi 2013]. We should also mention some attempts at
making the technique applicable to programs which are not pure, but which can produce, for
example, nondeterministic choice, exception-handling and probabilistic e�ects. In the third case the
decidability results scale back [Kobayashi et al. 2020], with undecidability showing up already at
order two and for mere reachability properties. In the �rst case, instead results remain essentially
unchanged [Kobayashi 2009; Tsukada and Kobayashi 2014], and in the second case, e�cient
veri�cation tools can be obtained through optimized abstractions and transformations [Sato et al.
2013].

The motivation from which this work originates is precisely that of understanding the reasons for
the aforementioned discrepancies, at the same time giving a general account of the HOMC problem
in presence of e�ects. In doing so, we consider e�ects as captured by algebraic operations [Plotkin
and Power 2003], the latter producing some pre-de�ned e�ects or interpreted by way of e�ect
handlers [Hillerström et al. 2017; Kammar et al. 2013; Plotkin and Pretnar 2009]. This is not the �rst
attempt at studying the veri�cation of e�ectful higher-programs, as shown by fructuous approaches
based on type and e�ect systems [Gordon 2020; Sekiyama and Unno 2023; Song et al. 2022]. In
our work, we try to stay as general as possible, and thus we consider well-established ways of
capturing e�ects in higher-order _-calculi. On the side of speci�cations, we analogously try not to
consider ad-hoc formalisms, and look for conservative extensions of MSO in which the properties
of interest can be captured in a unifying way. In particular, in the algebraic approach to e�ects,
trees are considered up to an equational theory describing how the di�erent algebraic operations
should behave. This means that it is particularly important to be able to de�ne speci�cations that
take into account this equational theory. This is captured in our framework by the notion of an
observation [Johann et al. 2010; Matache and Staton 2019; Simpson and Voorneveld 2019].
The contributions of this paper are threefold:

• We �rst of all consider a �nitary version of Simpson and Voorneveld’s EPCF, a calculus with
full recursion and algebraic e�ects, showing that the computation tree semantics of any
EPCF program � is precisely the one of a _. -term �∗ obtained by CPS-translating � . Since

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

On Model-Checking Higher-Order E�ectful Programs 87:3

the _. -calculus is well-known to be equiexpressive with higher-order recursion schemes
[Nakamura et al. 2020], we obtain that the computation trees generated by EPCF can be
automatically checked against MSO speci�cations. This is in Section 4 and Section 5.
• Then, we turn our attention to more general and more expressive speci�cations. Among the
many proposals for a logic for algebraic e�ects, we consider a variation on the one proposed
by Simpson and Voorneveld [Simpson and Voorneveld 2019], in which e�ectful computations
can be tested through a notion of observation. We then prove that only certain notions of
observation give rise to decidable model-checking problems, this way justifying some of the
existing results in the literature, at the same time proving new ones. This is in Section 6.
• Finally, we consider the impact of e�ect handlers to the HOMC problem. We show that
handlers are indeed harmful to decidability, at least when general, well-established notions of
handlers are considered, including shallow and deep handlers. We conclude by considering
a rather restricted class of handlers which are su�ciently expressive to capture generic
e�ects [Plotkin and Power 2003], but for which model checking remains decidable. This is in
Section 7 and Section 8.

All in all, the results above provide a rather clear picture about how far one can go in applying
existing HOMC methodologies to e�ectful programs. The take-home messages are that in principle,
such techniques can be reused, provided the underlying notion of observation does not give rise to
too complex speci�cations, while handlers are potentially very dangerous, and should be used with
great care. The technical core of the paper is in Section 3 to Section 8, while Section 2 serves as a
gentle introduction to higher-order programming with e�ects and its veri�cation. Related work is
discussed in Section 9. Due to space limits, many details have been elided, but can be found in a
longer version of this paper [Dal Lago and Ghyselen 2023].

2 HIGHER-ORDER EFFECTFUL PROGRAMS, AND HOW TOMODEL-CHECK THEM

While the _-calculus is the reference paradigmatic model for pure functional programming, a
standard way of raising e�ects from within functional programs consists in invoking algebraic
operations [Plotkin and Power 2003], each of them corresponding to a particular way of producing
an observable e�ect. Even when the underlying programming language does not o�er algebraic
operations natively, many impure constructs can be interpreted this way. Consider, as an example,
the OCAML program in Figure 1a, call it P, which manipulates two ground global variables r and q

through a recursive higher-order function f . As can be easily realized, whenever the conditional is
executed the two references r and q contain the same boolean value. As a consequence, the Failure
exception is never raised, and the program can be considered safe. Could we automatically verify
the latter by way of higher-order model checking? Let us try to see if this is possible.

We can assume Loc to be a type of locations inhabited by r and q only, and that the program can
invoke any e�ect-raising operations from the following typed signature:

Σ = {Get : Loc ⇝ 2, Set : Loc × Bool ⇝ 1,Raise : Unit ⇝ 0}.

where the numbers denote the arity of the operation. Some standard abbreviations allow us to
form the term in Figure 1b, call it "P, whose structure is very similar to the one of P. In doing
so, we have adopted a syntax close to Simpson and Voorneveld’s EPCF. Observe how OCAML’s
reference commands have become algebraic operations from Σ, and how Get has arity equal to two,
accounting for the fact that the program can proceed depending on the value read from memory.
By the way,"P closely corresponds to the way one would write P in languages like EFF [Pretnar
2015].

But how could algebraic operations be helpful in the task of verifying the safety of P? Actually,
the evaluation of programs which invoke algebraic operations naturally gives rise to a so-called

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

87:4 Dal Lago and Ghyselen

le t r = ref true ; ;

le t q = ref true ; ;

le t rec f g =

let y = ! r in

let z = !q in

i f (g y z) then failwith (" Failure ") else begin

r := (not z) ;

q := (not y) ;

f g ;

end

in f (fun x y ↦→ x <> y)

(a) An OCAML program P which never fails.

Set ((r , true) ;__ .

Set ((q , true) ;__ .

let F = return (fix f ._g .

Get(r ,_y .

Get(q ,_z .

le t x = (g y z) in

case (x , Raise () ,

Set ((r ,not z) ;__ .

Set ((q ,not y) ;__ .

f g))

))))

in F (_ (x ,y) . x ⊕ y)

))

(b) An EPCF term"P.

Fig. 1. An OCAML program and its EPCF equivalent.

Set(r,False)

Set(q,False)

Get(r)

Get(q) Get(q)

Raise() Raise() Set(r,True)

Set(q,True)

Set(r,True)

Set(q,True)

...
...

(a) Tree Generated by"P.

q 7→ a
r 7→ b

Set(q, c)
q 7→ c
r 7→ b

q 7→ 0
r 7→ b

Get(q) OK
1

0

Set(q, c)OK OK

Get(q)

0

OK

1

RaiseOK

(b) Automaton Capturing the safety of a

programworking with the boolean variables

r and Q.

Fig. 2. E�ect tree and automaton capturing safety.

e�ect tree. The e�ect tree produced in output by "P looks like the one in Figure 2a. Through it,
one can verify that Raise is never executed by exhaustively considering all branches of the tree,
and verifying that those which are somehow coherent with the store operations do not end in a
leaf labelled with Raise. Here, coherent branches are those that, e.g., when encountering Get(@)
proceed left (respectively, right) depending on the last Set(@, 0) operation performed. This reasoning
can indeed be encoded by an alternating parity tree automata, and thus by aMSO or `-calculus
formula [Emerson and Jutla 1991; Grädel et al. 2003]. Let us brie�y describe how this automaton
can be constructed (here, by the way, we only need a top-down deterministic automaton). Its set of
states comprises all assignments of boolean values to the variables r and q, together with a special
accepting state OK. Intuitively, the latter captures incoherent states, and any action is accepted
from there. Some example transitions are in Figure 2b. The �rst two capture the expected behaviour
of Set and Get on stores, while the last three are there to model the fact that every action, including
Raise is allowed in the state OK. Of course, Raise is not available in ordinary stores instead, since
the property of interest is precisely the absence of uncaught exceptions.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

On Model-Checking Higher-Order E�ectful Programs 87:5

All in all, then, we indeed have a way to turn impure functional programs into terms of a calculus
called EPCF which generate trees that are, at least super�cially, amenable to model checking. There
is still a missing link though: it could well be that EPCF is simply too expressive, and that the
model-checking problem is undecidable. Fortunately, however, we can turn EPCF programs into
_. -terms, for which MSO model checking is indeed decidable [Nakamura et al. 2020]. This is
precisely what we prove in Section 5 below.

Summing up, HOMC could indeed be helpful when performed on e�ect trees, because the program
we are interested in verifying, and arguably any term working with global references over �nite
domains can be turned into a term of the _Y-calculus, while the property becomes anMSO formula.
But how about other e�ects? Can we turn the construction above into something more general
and systematic? While speci�c kinds of e�ects are considered in the literature [Kobayashi 2009;
Kobayashi et al. 2020; Ong 2015], no general result is known. In fact, each e�ect comes equipped
with its intended notion of observation [Dal Lago et al. 2017; Johann et al. 2010; Matache and Staton
2019; Simpson and Voorneveld 2019]. Which ones of those are simple enough to guarantee that
model checking useful properties stays decidable?
For the sake of convincing the reader that the questions above are not trivial, let us consider

another example of an e�ectful higher-order program, borrowed from [Kobayashi et al. 2020]:

le t F = return (fix f . __ .

Flip (_ b .

case (b , return () ,

le t x = f () in let y = f () in f ()

))) in F ()

The algebraic operation Flip(_1.�) should be understood as �ipping a random coin, storing the
result in 1, and continuing as� . Intuitively, the program described above de�nes a procedure 5 that
starts by �ipping a coin. If the coin returns head, the procedure halts. Otherwise, the procedure is
executed three times. This program generates an e�ect tree)0 where for every =, the tree)= can be
de�ned as:

)0 ≜ Flip()

return())2

)=+1 ≜ Flip()

)=)=+3

Indeed, the sequential composition in the third argument of the case operator gives raise to a stack
of continuations, meaning that a leaf return() is replaced by the tree computed by the continuation.
Here, the tree)= should be understood as a call to the recursive function 5 with a continuation
corresponding to = calls to this function. This behavior is similar to the one of a random walk, but
the program described above does not use any in�nite type, which is essential for Higher-Order
Model Checking. In fact, this tree can be computed by a term of the _Y-calculus, using a CPS
translation, see Example 2.10 from [Kobayashi et al. 2020]:

(. (_�, :, G .Flip (: G) (� (� (� :)) G))) (_G.G) return

Here, the use of higher-order functions is essential, since the function � takes a continuation as its
�rst input, and this continuation determines the number of calls to the procedure that still need to
be executed. For such a program, it is natural to wonder whether return is called or not (if the
program terminates), but given the presence of (probabilistic) nondeterminism, there are various
ways in which this can be spelled out. Do we mean that the program must (or may) reaches return?
Or do we rather mean that the program reach return with probability 1? The latter question seems
the most appropriate, given that probabilistic choice is captured by the subdistribution monad D(·)
and that D(return) is just a real number between 0 and 1, i.e., the probability of not diverging.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

87:6 Dal Lago and Ghyselen

Γ, G :) ⊢ G :)
Γ, G :) ⊢ " : *

Γ ⊢ _G ." :) → *

Γ ⊢ " :) → * Γ ⊢ # :)
Γ ⊢ " # : *

Γ ⊢ " :) →)
Γ ⊢ ." :) Γ ⊢ 5 : >ar(5) → >

Fig. 3. Typing Rules for _Y-terms

If this is the case, however, recent results by Kobayashi, Dal Lago, and Grellois [Kobayashi et al.
2020] show that HOMC is not decidable in general, so the construction of an MSO formula (or an
automaton) like the one above is simply not possible. May or must termination, instead, can easily
be captured: may termination consists in exploring the tree and �nding at least one return, while
must termination is satis�ed if the tree has no in�nite branch, and all leaves are return leaves,
which is a property that can be encoded as a parity condition of an alternating parity automaton.

To sum up, we can see e�ectful higher-order programs as producing e�ect trees computed by
terms of the _Y-calculus (or equivalently, higher-order recursion schemes) for which we know that
MSOmodel-checking is decidable. This works particularly well for some e�ects, for example global
store with �nite domains, since the properties of interest can be expressed as an MSO formula.
However, for some more involved e�ects, such as probabilistic choice, the underlying notion of
observation is not expressible inMSO. The aim of this paper is to take a general look at this problem,
and understand the deep reason behind this discrepancy.

3 PRELIMINARIES ABOUT HIGHER-ORDER MODEL CHECKING

3.1 Infinite Trees Generated by _Y-Terms

In Higher-Order Model Checking, models are traditionally taken to be in�nite trees produced
by so-called Higher-Order Recursion Schemes (HORS in the following). In this work, we rather
consider Böhm trees generated by ground type terms in the _. -calculus with �rst-order constants,
which is well known to express the same class of trees as HORSs [Nakamura et al. 2020; Salvati and
Walukiewicz 2012]. This section is devoted to presenting some preliminaries about the _. -calculus
and the model checking problem for it.

Formally, the _. -calculus can be seen as the simply-typed _-calculus extended with full recursion
and with �rst-order function symbols:

(Types)),* ::= > |) → *

(Terms) ", # ::= G | _G ." | " # | ." | 5 ∈ Σ

The signature Σ is a set of �rst-order constants, such that each 5 ∈ Σ comes equipped with an
arity ar(5) ≥ 0 capturing the fact that the type of 5 is > → · · · → >︸ ︷︷ ︸

ar(5) times

→ > , often abbreviated as

>ar(5) → > . When this does not cause ambiguity, we usually write 5 : ar(5) to specify the arity of
5 in a given signature . In this work, the type > should be understood both as the type of trees and
as the answer type for the CPS translations we introduce below. Typing rules are standard, and can
be found in Figure 3.
We see the _. -calculus as a tool to generate in�nite trees. In order to precisely de�ne the tree

generated by a typable term, one has to de�ne a form of dynamic semantics, which we here take as
weak head reduction: we never reduce the argument of any application, and we never evaluate terms
in the scope of _-abstractions. Weak head reduction is traditionally the notion of reduction the
_. -calculus is endowed with, and it makes the generation of in�nite trees more natural, similarly

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

On Model-Checking Higher-Order E�ectful Programs 87:7

(_G.")# → " [# /G] ." → " (.")
" → #

" ! → # !

Fig. 4. Weak Head Reduction Rules

to the reduction found in HORS. Rules for weak head reduction are standard, and can be found in
Figure 4. It is relatively easy to see that typed closed terms in weak head normal form, i.e. typed
terms with no free variables that cannot be further reduced, are precisely the (typable) terms
generated by the following grammar:

� , ::= _G." | 5 "1 "2 · · · "=

Indeed, a _-abstraction is in normal form, constants are in normal form, and" # is in normal form if
and only if" is in normal form and" is not a _-abstraction. As a consequence, we can easily realize
that terms of ground type in weak head normal form have the shape 5 "1 "2 · · · "ar(5) , where
each"8 is itself a term of ground type. This naturally suggests a potentially in�nite process turning
any such term into a tree with root 5 and ar(5) subtrees obtained by evaluating "1 · · · "ar(5) ,
respectively. This can be made formal as follows:

Definition 1 (Infinite Trees). The set of (potentially in�nite) trees generated by a signature Σ,

denoted TreeΣ, is coinductively de�ned by the grammar:

C ::= 5 (C1, · · · , Car(5)) | ⊥

where 5 : ar(5) ∈ Σ.

The constant⊥ represents a non-terminating non-productive computation that does not generate
any function symbol. As an example, if Σ is the signature {6 : 2, 5 : 1, 0 : 0}, one can form the
non-regular in�nite tree 6(0,6(5 (0), 6(5 (5 (0)), · · ·)). We are now ready to de�ne how any closed
ground _Y-term generates such an in�nite tree:

Definition 2 (Böhm Trees of Closed Ground Terms). Given a closed term" of type > , i.e. we

have · ⊢ " : > , the Böhm tree of " , denoted �) ("), is de�ned by way of the following essentially

in�nitary process. Starting from" , we apply→ ad in�nitum. This can have two possible outcomes:

• " can be reduced in�nitely, and in this case �) (") is simply ⊥
• " can be reduced to a weak head normal form � = 5 "1 "2 · · · "0A (5) such that for all

1 ≤ 8 ≤ =, we have ⊢ "8 : > . Then, �) (") = 5 (�) ("1), �) ("2), · · · , �) ("ar(5))).

The aforementioned process is in�nitary in two di�erent ways: the evaluation of " can diverge,
and �) (") can be in�nite. The process above is well-de�ned only for closed terms of ground type
and is thus less general than the one generating Böhm Trees for arbitrary terms of the _. -calculus
[Clairambault and Murawski 2013] (there, in particular, one has to deal with _-abstractions).

Example 1. As an example, with the signature Σ = {6 : 2, 5 : 1, 0 : 0}, consider the term

" ≜ (. (_� ._G .6 G (� (5 G)))).

We pose"step ≜ (_� ._G .6 G (� (5 G))). By applying weak head reduction rules, we obtain

" 0 → "step " 0 → (_G .6 G (" (5 G))) 0 → 6 0 (" (5 0))

Thus, �) (" 0) = 6(0, �) (" (5 0))), and similarly �) (" (5 0)) = 6(5 (0), �) (" (5 (5 0)))), �nally
we obtain that �) (" 0) = 6(0,6(5 (0), 6(5 (5 (0)), · · ·))) the in�nite tree described above.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

87:8 Dal Lago and Ghyselen

3.2 Expressing Properties As Alternating Parity Tree Automata

Now that we have de�ned the class of models for higher-order model checking, we can de�ne the
speci�cation language. The gold standard in model-checking consists in properties expressed by
formulas of monadic second order logic [Knapik et al. 2001] (MSO for short). However, several
equiexpressive speci�cation languages have been de�ned in the literature, notably `-calculus
[Walukiewicz 1993] and alternating parity tree automata (APT for short) [Emerson and Jutla 1991;
Grädel et al. 2003]. The latter is commonly used in the HOMC literature [Kobayashi and Ong 2009;
Ong 2006, 2015], and as the examples we de�ne through the paper have a simple representation as
automata, we also chose this speci�cation language.

Given a set- of variables, we de�ne the positive Boolean formulas over- by way of the following
grammar:

q,k ::= tt | ff | G | q ∧k | q ∨k
with G ∈ - . The set of all positive Boolean formulas over - is indicated as �+ (-). A subset . ⊆ -
satis�es a formula q , denoted . ⊨ q if and only if interpreting any G ∈ . by tt and any G ∉ . by
ff makes q true. We can now give the formal de�nition of an APT automaton:

Definition 3 (Alternating Parity Tree Automaton). An alternating parity tree automaton
is a tuple A = (Σ, &, X, @8 ,Ω) where

• Σ is a signature, de�ning tree constructors with their arity.

• & is a �nite set of states, with @8 ∈ & the initial state.

• X is the transition function, such that for each 5 ∈ Σ, we have X (@, 5) ∈ �+ ({1, . . . , ar(5)} ×&).
A translation X (@, 5) is thus a positive formula on a state assignment to children nodes.

• Ω : & → {0, . . . , "} is the priority function, with" ≥ 0 an integer.

To de�ne the acceptance condition of an automaton, we need to introduce the notion of positions
in a tree.

Definition 4. Let Σ be a set of tree constructors with maximal arity �. The set of all positions of a

tree C , denoted 3><(C), is a set of words on the alphabet Γ = {1, . . . , �} de�ned as:

3><(⊥) = Y; 3><(5 (C1, . . . , C:)) = {Y} ∪ 1 · 3><(C1) ∪ . . . ∪ : · 3><(C:);

where · is the concatenation operator for words. For a tree C and a position U ∈ 3><(C) we de�ne
C (U) ∈ Σ ∪ {⊥} by:

⊥(Y) = ⊥; 5 (C1, . . . , C:) (Y) = 5 ; 5 (C1, . . . , C:) (= · U) = C= (U) .

Informally, then C (U) is the label of the node at position U in C .

A run-tree of an automaton A over a tree C ∈ TreeΣ is a tree with constructors in 3><(C) ×& .
This run-tree must satisfy the following two constraints:

• The root is (Y, @8), representing the root of C in the state @8 .
• For any node (U, @) of the run-tree, there is a set (⊆ {1, . . . , ar(C (U))} which satis�es the
transition X (@, C (U)). And, for each (8, A) ∈ (, one of the children of (U, @) in the run-tree is
precisely (U · 8, A).

Finally, we say that an in�nite branch (Y, @8) · · · (U: , @:) · · · of the run tree satis�es the parity

condition if the largest priority that occurs in�nitely often in Ω(@8) · · ·Ω(@:) · · · is even. A run-tree
is accepting if every in�nite path in it satis�es the parity condition. And of course, a tree C ∈ TreeΣ
is accepted by an automatonA if there exists an accepting run-tree for C . It is well-known [Emerson
and Jutla 1991; Grädel et al. 2003] that acceptance from an APT automaton is equivalent to satisfying
a Monadic Second-Order (MSO) formula: for every automaton A, there exists an MSO formula on
tree Ψ such that C is accepted by A if and only if Ψ is true on C , and conversely.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

On Model-Checking Higher-Order E�ectful Programs 87:9

Example 2. We de�ne an automaton A = ({0 : 2, 1 : 1, 2 : 0}, {@0, @1}, X, @0,Ω) such that A
accepts a tree C if and only if for every path in C , 2 occurs eventually after 1 occurs. We pose:

• For all @ ∈ {@0, @1},we have that:

X (@, 0) = (1, @) ∧ (2, @); X (@,1) = (1, @1); X (@, 2) = tt.

This means, intuitively, that a node labelled with 0 propagates the state to both of its children,

seeing the letter 1 changes the state to @1 and a leaf 2 is always accepted.

• It holds that Ω(@0) = 0 and Ω(@1) = 1

By de�nition, if @1 occurs in�nitely often in a branch of the run tree, then the largest priority is 1 in

this branch, and the tree does not satisfy the parity condition. Thus, for this automaton to accept a tree

C , we must have either �nite branches (terminating with 2) or in�nite branches in which 1 does not

occur (in order to stay in the state @0). This corresponds indeed to the property that for every path in C ,

2 occurs eventually after 1 occurs.

We can now de�ne the model-checking problem and give the main result from [Ong 2006].

Definition 5 (MSOModel-Checking Problem for the _Y-Calculus). Given a closed _Y-term

" with ⊢ " : > and an APT A, is �) (") accepted by A ?

Theorem 1 (Decidability [Ong 2006, 2015]). The MSO model-checking problem for the _Y-

calculus is decidable.

The complexity of this problem, itself studied in [Ong 2006], is exponential, depending on the
order of the _Y-term (or, equivalently, the order of the higher-order recursion scheme [Nakamura
et al. 2020]). The aim of our work is on decidability, so we will not take orders into account, but
we plan to study complexity issues in the future, given that a �ner complexity analysis of related
problems is already available [Nakamura et al. 2020; Tsukada and Kobayashi 2014].
Thanks to this theorem, showing thatMSO model-checking is decidable for a class of in�nite

trees only requires showing that this class of trees can be computed by _Y-terms, and this can be
done via e�ective program transformation to the _Y-calculus, as we will see in many occasions
starting from the next section.

4 HIGHER-ORDER PROGRAMSWITH EFFECTS

In this section, we introduce a calculus with algebraic operations and �xpoints, called EPCF. This
language can be seen as a �ne-grained call-by-value variation on Plotkin’s PCF endowed with
e�ect-triggering operations, as described in [Simpson and Voorneveld 2019]. We consider a �nitary
version of this language which di�ers from Simpson and Voorneveld’s one only in minor ways.
Evaluating programs producing e�ects in CBV is natural, as it allows arguments to produce e�ects
before being passed to functions.
EPCF is built around two syntactic categories, namely that of values, which denote data or

functions, and the one of computations, which are instead programs which potentially produce
e�ects when evaluated. Terms and types for EPCF are as follows:

(Values) + ,, ::= E | = | G | _G .� | fix G .+

(Computations) �, �,� ::= + , | return(+) | let G = � in � | f (+ ;G .�) |

case(+ ;�1, . . . ,�:)

(Types)),* ::= B | k |) → *

We suppose we are given a set of �nite ground types, ranged over by B. Examples include the unit
type and the type of booleans. We similarly assume a setV of constant values each of a ground

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

87:10 Dal Lago and Ghyselen

E : B ∈ V
Γ ⊢ E : B

0 < = ≤ :
Γ ⊢ = : k

Γ, G :) → * ⊢ + :) → *

Γ ⊢ fix G .+ :) → *

Γ ⊢ + :)
Γ ⊢ return(+) :)

Γ ⊢ � :) Γ, G :) ⊢ � : *

Γ ⊢ let G = � in � : *

(f : B ⇝ :) ∈ Σ Γ ⊢ + : B Γ, G : k ⊢ � :)

Γ ⊢ f (+ ;G .�) :)

Γ ⊢ + : k (Γ ⊢ �8 :))1≤8≤:
Γ ⊢ case(+ ;�1, . . . ,�:) :)

Fig. 5. Typing Rules for EPCF

(_G .�), → � [, /G] (fix G .+), → (+ [(fix G .+)/G]),

case(=,�1, · · · ,�:) → �=

let G = return(+) in � → � [+ /G]
� → �′

let G = � in � → let G = �′ in �

let G = f (+ ;~.�) in � → f (+ ;~.let G = � in �)

Fig. 6. Semantics for EPCF

type, ranged over by E , e.g. a unique constructor () ∈ V with its associated type Unit. We also
assume �nite enumeration types k to be present, each of them inhabited by the values 1, 2, . . . , : .
We introduce enumeration types, which support pattern matching, just to keep them distinct from
�nite base types.

Algebraic operations have the shape f (+ ;G .�) where+ is said to be a parameter, and� represents
the continuation of the computation. The variable G is bound in � and represents the choice made
by the algebraic operation. We suppose given a signature set Σ of symbols for algebraic operations,
where each f ∈ Σ is given an arity B ⇝ : , meaning that f is an algebraic operation of arity :
depending on a parameter of type B. In an operation of arity : , the type of G in the continuation �
is k. In particular, de�ning : di�erent continuations �1, . . . ,�: depending on the possible values of
G can be done by way of the computation f (+ ;G .case(G,�1, . . . ,�:)). As common in call-by-value
calculi, the �xpoint operator fix G .+ is a value and, without any loss of generality, is only attributed
function types. Finally, the shape of computations is restricted in that the only way to compose
computations is to use the let constructor. For example, if we want to apply the result of the
computation � to the function computed by � , we need to de�ne a computation

let G = � in let ~ = � in ~ G or let ~ = � in let G = � in ~ G

As can be seen from this example, the order of evaluation is imposed by sequencing, a property
which turns out to be crucial in presence of e�ects, as we will see when looking at the semantics.

As for the EPCF type system, which is pretty natural and standard, we give some of the rules
in Figure 5. The typing rule for algebraic operations stipulates that an e�ect does not change the
type of the whole computation, which is arbitrary. Intuitively this is because calling an algebraic
operation induces an e�ect f , depending on the parameter+ , and the computation will continue as
� after producing this e�ect.

We now introduce the dynamic semantics of EPCF which is based on the reduction rules from
Figure 6. The cornerstone of this relation is the last rule, allowing algebraic operations to “percolate
out” of non-trivial evaluation contexts. Intuitively, this rule tells us that if we have a computation
of the shape let G = � in � , and � is a computation producing an e�ect f , then this e�ect is

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

On Model-Checking Higher-Order E�ectful Programs 87:11

immediately visible from the outside, its continuation now incorporating the let expression at
hand. If we go back to the aforementioned example describing the composition of computations,
namely the pair of terms

let G = � in let ~ = � in ~ G ; let ~ = � in let G = � in ~ G ;

we can see that in the �rst case, the e�ects thrown in � occur �rst, followed by the ones in � , and
that the converse holds for the other case.

Example 3. Let us consider a computation which �ips a fair coin, then returning the exclusive

or of the obtained value and itself (which is thus always going to be false). All this makes use of an

algebraic operation Flip having arity unit ⇝ 2 and of a binary function ⊕ computing the exclusive

or, and which can anyway be easily written as a term (with a small abuse of notation allowing function

application with multiple arguments):

let G = Flip(·;~.~) in (G ⊕ G)

In a call-by-value setting, this program should �rst �ip a coin, thus always returning 0 in the end.

Indeed, the dynamic semantics allows the Flip operation to be visible from the outside:

let G = Flip(·;~.~) in (G ⊕ G) → Flip(·;~.let G = ~ in G ⊕ G)

There are two observations one needs to make now. The �rst is that the continuation let G = ~ in G ⊕G
returns 0 for all values of ~, as expected, but since it occurs as the argument of Flip it cannot be further

reduced, and its evaluation must be captured somehow di�erently. The second one is that in presence

of e�ects, con�uence is lost. If, indeed, we pass Flip(·;~.~) unevaluated to the right-hand side, in a

call-by-name fashion, we land on a totally di�erent term, namely one which �ips two coins, possibly

returning 1:

let G = Flip(·;~.~) in (G ⊕ G) →cbn (Flip(·;~.~) ⊕ Flip(·;~.~)) .

The example above implicitly tells us that, similarly to what happens in the _. -calculus, terms
of EPCF generate in�nite trees that we commonly call e�ect trees, but that the dynamic semantics
is not by itself taking care of the unfolding: indeed, typed closed computations in normal form in
EPCF are either of the shape return(+), which is expected, or f (+ ;G .�), meaning that evaluation
apparently stops as soon as an algebraic operation is encountered. The e�ect tree of a computation
is what we are looking for and is de�ned as follows:

Definition 6 (Effect Trees for EPCF Computations). For an algebraic e�ect signature Σ and

a type) , let us de�ne the signature Σ) as follows:

Σ) = {f : : + 1 | ((f : B ⇝ :) ∈ Σ)} ∪ {return(+) : 0 | ⊢ + :) } ∪ {E : 0 | E ∈ V}

Note that Σ) is in�nite in the general case, but that it is guaranteed to be �nite whenV is �nite and)

is a ground (and thus �nite) type. The e�ect tree of a typed computation ⊢ � :) , denoted �) (�), is a
tree in TreeΣ) de�ned by the following essentially in�nitary process. First of all, reduce� ad in�nitum,

with one of three possible outcomes:

• If � can be reduced ad in�nitum without reaching a normal form, then �) (�) = ⊥
• If � →∗ return(+) then �) (�) = return(+)
• If � →∗ f (E ;G .�) with f : B ⇝ : then �) (�) = f (E, �) (� [G := 1]), · · · , �) (� [G := :]))

This de�nition of an e�ect tree di�ers a bit from the one in the literature by the use of a special
branch for parameters. Formally, standard e�ect trees [Matache and Staton 2019; Simpson and
Voorneveld 2019] would be de�ned on the signature

Σ
′
) = {fE : : | ((f : B ⇝ :) ∈ Σ) ∧ (⊢ E : B ∈ V)} ∪ {return(+) : 0 |⊢ + :) },

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

87:12 Dal Lago and Ghyselen

with the expected de�nition when seeing an e�ect f (E ;G .�). Intuitively, operations are indexed by
their parameters, and this is equivalent to what happens in our de�nition since parameters are
taken from some �nite type B. In particular, any MSO formula on a standard tree with indexed
e�ects can be translated to an equivalent formula on e�ect trees with branching for parameters,
see Section 6, Proposition 3 for more details. Anyway, we notice that this de�nition is similar to the
notion of Böhm trees we gave in De�nition 2. And indeed, we show that we can relate the notion
of an e�ect tree from EPCF and the notion of a Böhm tree from the _. -calculus. Formally, we need
to use a CPS translation similar to the one described in [Matache 2018; Matache and Staton 2019].

Example 4. As an example, we can compute a tree with similarities with the one of Example 1 in

the _Y-calculus. We take Σ = {f5 : Unit ⇝ 1, f6 : Unit ⇝ 2}, and the EPCF computation

� ≜ fix � .(_G.f6 ((), =.case(=; , G (), � (_I.f5 ((), _.G ())))) .

For the sake of clarity, let us ignore all the parameters for algebraic operations, which do not bring

anything interesting here since they are always equal to (). Then, we have that

� (_I.return(())) → f6 ((_I.return(())) (),� (_I
′ .f5 ((_I.return(())) ()) ())) .

And if we proceed further along the computation, we see that the e�ect tree C of � (_I.return(())) is

C ≜ f6 (return(()), f6 (f5 (return(())), · · ·).

Note that since we evaluate computation following the call-by-value order, we need to use thunk

functions, something which is not needed in the _Y-calculus. As expected, in the translation from EPCF

to _Y-calculus, we have to take all of this into account, and CPS turns out to be what we need.

5 FROM EPCF TO THE _. -CALCULUS

It is now time to turn the informal arguments we made at the end of the last section into something
more formal. Indeed, translating any EPCF computation into a term of the _. -calculus is possible,
as we are going to show.

The fact that EPCF ground values, arities, and parameters are all taken from �nite types implies
that for every algebraic e�ect signature Σ, the signature Σ. de�ned as {E : 0 | E ∈ V} ∪ {f : : + 1 |
((f : B ⇝ :) ∈ Σ)} is itself �nite. This enables the de�nition of a transformation scheme from
EPCF to the _. -calculus with constants in Σ. , which we �rst give on types:

Definition 7 (CPS Type Transform). For the sake of conciseness, we use ¬) to denote the type

) → > . We pose:

B∗ = > ; k∗ = ¬(>:); () → *)∗ =) ∗ → ¬* ∗ → >.

We extend this function to contexts, with ∅∗ = ∅ and (Γ, G : *)∗ = Γ
∗, G : * ∗.

Observe how base types and enumeration types are translated in two essentially di�erent ways,
and that arrows are translated following the usual double-negation scheme. The following De�nition
instead captures how our translation works on terms. Its structure is heavily in�uenced by the fact
that we are mapping a CBV calculus to a CBN calculus.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

On Model-Checking Higher-Order E�ectful Programs 87:13

Definition 8 (CPS Term Transformation). We de�ne + ∗ and �∗ with the intuition that if

Γ ⊢ + :) and Γ ⊢ � : * then Γ
∗ ⊢ + ∗ :) ∗ and Γ ⊢ �∗ : ¬¬* ∗:

E∗ = E when E ∈ V (_G.�)∗ = _G.�∗

G∗ = G (fixG .+)∗ = . (_G.+ ∗)

=∗ = _G1, . . . , G: .G= case(+ ;�1, . . . ,�:)
∗
= _2.+ ∗ (�1 2) · · · (�: 2)

(+ ,)∗ = _2.+ ∗, ∗ 2 (let G = � in �)∗ = _2.�∗ (_G .�∗ 2)

return(+)∗ = _2.2 + ∗

f (+ ;G .�)∗ = _2.f + ∗ (�∗ [G := 1∗] 2) · · · (�∗ [G := :∗] 2)

Remark that this translation can be done because of our choice of de�ning e�ect trees with a
dedicated branch for parameters: it is not possible at transformation-time to know exactly the
value of the parameter + of an algebraic operation, but with our de�nition of e�ect trees, we can
postpone the identi�cation of + ∗ by just passing it as an argument. This translation is well-typed,
as shown by the following lemma, whose proof is straightforward:

Lemma 1. If Γ ⊢ + :) then Γ
∗ ⊢ + ∗ :) ∗ and if Γ ⊢ � : * then Γ ⊢ �∗ : ¬¬* ∗.

Then, we would like to show that this translation is a simulation. We have to be careful however
since weak-head reduction turns out to be insu�cient for our purposes and has to be extended
with administrative reduction rules [de Groote 1994; Hillerström et al. 2017; Plotkin 1975]. Formally,
we introduce a new reduction relation→adm by way of the following rules:

(_2."8) 2 →adm "8

5 constant ("8 →adm #8)1≤8≤=
5 " "1 · · · ": →adm 5 " #1 · · · #:

Intuitively, administrative reduction consists in applying a V-rule, possibly in the argument of an
application (which is not possible in head reduction). This small set of rules is exactly what we
need to have the simulation, and it should be intuitive that applying those rules has no impact on
the Böhm tree of the underlying _Y-term. Remark that we could have de�ned the transformation
of a f using (_G.�∗) 1∗ instead of directly �∗ [G := 1∗] if we wanted to avoid using substitutions in
the encoding. But this would induce more administrative reductions.

Lemma 2. If � → � then for all continuation 2 , there is a term " such that �∗ 2 →+ " and

�∗ 2 →≤2
adm

" .

Proof. The proof can be done by induction on the structure of a proof of � → �. All cases are
straightforward and do not need administrative reduction except for the rule

let G = f (+ ;~.�) in � → f (+ ;~.let G = � in �),

in which we do need administrative reductions, as we need to reduce the arguments of the constant
f in the transformation f (+ ;~.let G = � in �)∗ 2:

_2.f + ∗ ((_2.�∗ [~ := 1∗] (_G.�∗ 2)) 2) · · · ((_2.�∗ [~ := :∗] (_G.�∗ 2)) 2) 2

→≤2
adm

f + ∗ (�∗ [~ := 1∗] (_G.�∗ 2)) · · · (�∗ [~ := :∗] (_G .�∗ 2))

□

This means, in particular, that if a computation� never reaches a normal form, then�∗ 2 does not,
either. Indeed, the only case when we use administrative reductions is the one about the reduction
rule involving sequencing and algebraic operations: if this rule can be used in a computation, then
the computation will have a normal form, beginning with this e�ect. Then, by comparing the
normal form of � and �∗ 2 , we obtain the following theorem.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

87:14 Dal Lago and Ghyselen

Theorem 2. For every ⊢ � :) , and for every ⊢ 2 :) ∗ → > , it holds that �) (�∗ 2) equals
�) (�) [return(+) ← �) (2 + ∗)].

Thus, �) (�∗ 2) perfectly simulates the e�ects produced by � , except for return values: instead
of a leaf we have a tree representing the e�ect applied to this value by the continuation. It thus
makes sense to talk about the MSO model-checking problem for EPCF as the task of verifying given
⊢ � :) and ⊢ 2 :) ∗ → > as above, and given an APT automaton A, whether �) (�∗ 2) is accepted
by A. Using standard results on Higher-Order Model Checking, we indeed have that:

Corollary 1. The MSO model-checking problem for EPCF is decidable.

In particular, if the continuation 2 returns a new constant , then �) (�∗ 2) is equal to �) (�) with
all return leaves replaced by . Also, if) is a ground type, then 2 can be taken as the identity, and
we have exactly decidability of MSO model-checking for �) (�). In general, the set of all possible
values in the form return(+) is in�nite, as they could be, e.g., _-abstractions, but Ttheorem 2
provides us with some freedom, as we can always pick the continuation we want to discriminate
between those values.

6 SPECIFICATIONS THROUGH OBSERVATIONS

In the previous section, we proved that EPCF computations can be translated into equivalent (in
the sense of the tree they generate) _. -terms. But how can we actually exploit this result for the
sake of verifying interesting properties about the e�ect tree generated by EPCF programs? Of
course, we can automatically verify whether a givenMSO formula has (the e�ect tree generated
by) a given EPCF term as its model. But, is it the end of the story?
As already, mentioned, there are many proposals in the literature [Matache and Staton 2019;

Plotkin and Pretnar 2008; Simpson and Voorneveld 2019] about logics speci�cally designed for
the sake of expressing properties of interest for e�ectful (possibly higher-order) programs. In this
paper we will somehow follow the path recently hinted at by Simpson and Voorneveld [Simpson
and Voorneveld 2019].
E�ect trees as we have used them so far are not subject to any equational theory, the latter

often being associated to e�ects and justi�ed by their monadic interpretation [Moggi 1988]. As
an example, the following equations hold in the state monad, itself a way to interpreting the �rst
example from Section 2:

Set(ℓ, true, _.Get(ℓ,~.�)) = Set(ℓ, true, _.� [~ := 1]) Set(ℓ, 0, _.Set(ℓ, 1, _.�)) = Set(ℓ, 1, _.�)

Some other equations includes distributive laws and equalities for program starting with Get �rst,
see Example 2.2 in [Bauer 2019] for the full set. As pointed out in [Simpson and Voorneveld 2019],
we can capture those equations between e�ect trees agnostically, without the need of explicitly
referring to monads, through the notion of an observation, namely a set of properties of e�ect trees:

Definition 9 (Observations [Simpson and Voorneveld 2019]). For a given set of algebraic

operations Σ, we de�ne a set of observations as a set, denoted O, such that each > ∈ O is a subset of

the e�ect trees of type unit, i.e > ∈ TreeΣUnit

On top of a set of observations O, Simpson and Voorneveld de�ne a logic endowed with a modal
operator of the form >q , where > is an element of O and q is a formula. An e�ect tree satis�es
>q if it is among the trees in > and all its leaves satisfy q . This way, the logic can observe the
tree at hand through the lenses of the observations in O, implicitly accounting for equations: it
is necessary to de�ne O such that all its elements are invariant by the desired set of equations.
The resulting logic is quite powerful, being in�nitary in nature, and turns out to precisely capture
observational equivalence [Dal Lago et al. 2017] for (a calculus closely related to) EPCF. Noticeably,

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

On Model-Checking Higher-Order E�ectful Programs 87:15

most notions of e�ects, including nondeterministic, probabilistic and state e�ects can be captured
this way [Simpson and Voorneveld 2019]. Thanks to this notion of observation, we can work on
e�ect trees without taking the quotient by the algebraic equalities, and use instead equivalence
for the aforementioned modal logic with observations, a choice which seems a natural setting for
higher-order model checking of e�ectful programs.
The logic at hand, however, turns out to be strictly more powerful thanMSO or the `-calculus.

This happens for two distinct reasons: on the one hand, it is essentially in�nitary in nature, this
way accounting for the fact that the target calculus has countable base types. On the other hand, the
underlying set of observations O can be arbitrarily complex, thus injecting a huge discriminating
power into the logic, something that MSO cannot do natively.

Motivated by all that, we address the following question in the rest of this section: can we express
useful properties of e�ect trees as observations from withinMSO itself? In other words, is it the
case that for a given notion of e�ect, all the elements of O are captured byMSO formulas? This
way, we could at least be sure, given the results from Section 5, that model-checking is decidable
relative to O. This is precisely what motivates the following de�nition of an extension of MSO (or
`-calculus) with observations.

Definition 10 (Observation Predicate). Suppose given a signature Σ for e�ect trees, containing

a set of algebraic operations, and possibly some other constructors (that could come, e.g., from parameter

values, or special constants of the _Y-calculus). Fix a set of observations O. Let C ∈ TreeΣ, and % a

subset of constructors all of them of arity 0. We de�ne C [∈ %] as the tree obtained from C by replacing

the leaves in % with return(()) and all the other leaves with ⊥. We next de�ne, for each > ∈ O and

each % , a formula >% , called an observation predicate, such that for any e�ect tree t, we have

C ⊨ >% i� C [∈ %] ∈ >

Note that we have indeed that C [∈ %] is an e�ect tree of type Unit, thus it can be an element of > .

Write MSOO for the conservative extension of MSO (on in�nite trees) obtained by enriching the class

of formulas with observation predicates.

This notion of observation predicate having access to a set % is, thanks to �niteness, equiexpressive
to the formulas >q de�ned in [Simpson and Voorneveld 2019], in which q is supposed to be a
formula that separates the correct leaves from the incorrect ones in an in�nite set of leaves. Here,
because of �niteness, we have a �nite number of such separations, thus we can take a set % instead
of a formula q .
MSOO can thus be seen as a natural candidate for a logic in which to write speci�cations about

higher-order e�ectful programs. But is the model checking problem emerging out of it decidable?
There are at least two possible answers to this question:

• Either the observation predicates from O are de�nable inMSO itself, in this caseMSOO is
equiexpressive withMSO, and the model checking problem remains decidable.
• Or those observation predicates are not MSO-de�nable, and we cannot conclude, with the
concrete risk of landing into an undecidable veri�cation problem.

We will now see some cases of e�ects and observations, each of them corresponding to one of
the two cases above. Let us start from an example of e�ect which is hard to capture.

Example 5 (Probabilistic Observations). The �rst counter-example to MSO-de�nability of

observation predicates comes from probabilistic e�ects. The set of observations for probabilistic choice,

with a unique operation Flip : unit ⇝ 2, is given by O = {>>@ | @ ∈ Q, 0 ≤ @ < 1}. Essentially, an
observation predicate >>@ means that the probability that the program terminates is greater than @. This

is not a MSO-de�nable property on e�ect trees, and this happens for very good reasons: higher-order

model checking for probabilistic HORSs is in general undecidable [Kobayashi et al. 2020]. □

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

87:16 Dal Lago and Ghyselen

Before looking at some positive examples, we need to deal with some little discrepancies between
our de�nition of an e�ect tree and the literature [Simpson and Voorneveld 2019]. Indeed, as
explained in Section 4, e�ect trees as introduced in De�nition 6 turn out to be slightly di�erent
from the standard ones, and this was essential to de�ne the translation presented in Section 5.
However, we would like to work directly with standard e�ect trees, as we did in Section 2, since
they are simpler and more customary. In fact, we can show that our de�nition is equivalent to the
usual one, at least as far as MSO model-checking is concerned: we can translate any MSO formula
(or APT automaton) on standard e�ect trees to a formula (or an APT automaton) on e�ect trees
with a special branch for parameters. Formally, we have:

Definition 11 (Adding a branch for parameters). For any tree C de�ned with the signature

Σ = {fE : : | ((f : B ⇝ :) ∈ Σ) ∧ (⊢ E : B ∈ V)} ∪ (

where (is a set of possible other constructors (e.g. coming from a chosen continuation in the _Y-calculus,

according to Corollary 1), we de�ne the tree C? on the signature

Σ? = {f : : + 1 | ((f : B ⇝ :) ∈ Σ)} ∪ {E : 0 | E ∈ V} ∪ (

as the tree C in which all nodes fE (C
1, · · · , C:) are replaced by the tree f (E, C1? , · · · , C

:
?). This translation

turns standard e�ect trees to trees as per De�nition 6.

We can now show that any MSO formula (or APT automaton) that is de�nable on TreeΣ is also
de�nable on TreeΣ? :

Proposition 3 (Effect Trees and APT Automata). For any APT automaton A that recognizes

standard e�ect trees in TreeΣ, there exists an APT automaton A? that recognizes the set {C? ∈

TreeΣ? | C is accepted by A}

Proof. The proof consists in adding a special state @E for each constant value E ∈ V and de�ne
the transition function as a disjunction of formulas depending on the value of the parameter.
Formally, we de�ne A? = (Σ, &? , X? , @8 ,Ω?) such that:

• &? ≜ & ⊔ {@E | E ∈ V}
• Ω? (@) = Ω(@) for @ ∈ & and Ω? (@E) = 0.
• For the transition function we have:
– X? (@, B) = X (@, B) if B ∈ (
– For all f : B ⇝ : , we have X? (@, f) =

∨
E:B∈V

(X (@, fE) [+1] ∧ (1, @E)) where q [+1] is the

formula q in which all pairs (=, A) are replaced by (= + 1, A).
– For all E ∈ V , X? (@E, E) = tt and X? (@E, 5) = ff for all 5 ≠ E .

Thus, intuitively, when we reach a node f , only one of the (1, @E) will be satis�ed, namely the one
corresponding to the actual parameter E of f . And then, the only satis�able formula in this big
disjunction would be X (@, fE) [+1] ∧ (0, @E), meaning that the transition is logically equivalent to
X (@, fE) [+1]. Thus, we can see that the new transition X? (@, f) is equivalent to the actual formula
X (@, fE) [+1] where E is the parameter of f in the tree C? , and from this it is straightforward to see

that A? recognizes the set {C? | C is accepted by A}. □

Let us now turn to examples of observations which are indeed MSO-de�nable.

Example 6 (Exceptions). Let us consider the singleton signature {Raise : Unit ⇝ 0}. By de�nition,
an e�ect tree in this case is just a leaf, that is either Raise, ⊥ or another leaf ℓ . The set of observations

[Simpson and Voorneveld 2019] is then de�ned as

O ≜ {↓, E}

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

On Model-Checking Higher-Order E�ectful Programs 87:17

where the observation predicate ↓% means that the program terminates (the tree is not ⊥) with a leaf

in % , and E% means that the tree is Raise, and % is ignored. In this simple case, the observations just

distinguish between leaves, which is something that can obviously be captured byMSO. By the way,

this e�ect can easily be composed with other e�ects. □

Example 7 (Nondeterminism). Let us consider the singleton set of algebraic operations {or :

Unit ⇝ 2}, which is enough to model binary non-deterministic choice. The notion of observation for

nondeterminism is given by the two modalities ♦ and □, where ♦% is the set of e�ect trees with at least

one �nite branch ending a leaf in % , and □% is the set of e�ect trees with only �nite branches, all of

them having a leaf in % . As a remark, the usual equational theory associated with nondeterminism is

the one of semi-lattices:

� or � = � � or � = � or � � or (� or �) = (� or �) or �

It should be clear that if two trees are observationally equivalent, i.e. they have the same truth value

for all observational predicates, then they are in the same equivalence class modulo this algebraic

theory. Moreover, the converse also holds. This is why we can use observations without the need to

take the aforementioned equations into account. It can be shown that these observations are de�nable

by APT automata. For the sake of the example, we explain informally the encoding of □% . We take

a unique state @8 . To impose �nite branching everywhere, it is su�cient to pose Ω(@8) = 1, because

this way no in�nite branch satis�es the parity condition. Then, we can just explore the tree, with the

transition X (@8 , >A) = (0, @8) ∧ (1, @8). And �nally, we can separate leaves with X (@8 , 0) = tt if 0 ∈ %
and X (@8 , 0) = ff if 0 ∉ % for all leaves 0. □

Example 8 (Finite State Monad). Going back to the examples from Section 2, we start with

the state monad, where the operations are Get and Set, with �nite domains. Following [Simpson and

Voorneveld 2019], the set of observations for this e�ect can be de�ned as follows:

O ≜ {>? ↦→@ | ?, @ are memory states}

with the intuitive semantics that >? ↦→@ contains all e�ect trees mapping the state ? to the state @ (this

computation is deterministic because the initial state is �xed, so we always know which branch should

be taken on a Get). Again, we can verify that observations are as discriminating as equality for the

algebraic theory of �nite states. It is also easy to see that the observation predicates coming from this set

are de�nable as APT automata. An observation predicate (>? ↦→@)% can be represented as an automaton

starting from a state @? , that follows the only deterministic path induced by the con�guration of

the memory states, and accepts only when this leads to a leaf G ∈ % in the state @@ , similarly to the

automata de�ned in Section 2. Thus, as expected, we can deduce that many interesting properties can

be decided on programs using a �nite state monad, since observations are MSO-de�nable. □

Example 9 (Input-Output). To conclude this section, we present an example dealing with I/O

e�ects. More speci�cally, we assume programs can interact with the environment by reading and

writing boolean values. The underlying signature is thus Σ = {Read : Unit ⇝ 2,Write : Bool ⇝ 1}.
This is actually the same signature as the one for the �nite state monad when only one location is

around. Since the equational theories of the two e�ects di�er, the two e�ects give rise to distinct sets of

observations. Following [Simpson and Voorneveld 2019], we �rst de�ne an I/O trace as a word over the
alphabet {?0, ?1, !0, !1}, representing an input/output sequence where ?1 means that the boolean value

1 is taken in input, while !1 means that the program outputs 1. The set of observations turns out to be

O ≜ {⟨F⟩ ↓, ⟨F⟩ ↑ | F is an I/O trace}.

The observation ⟨F⟩ ↓% is satis�ed on C ifF is a complete I/O trace of C resulting in termination with a

leaf in % . Similarly, ⟨F⟩ ↑% is satis�ed on C ifF is an initial I/O trace of C (and % is ignored). Again, it is

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

87:18 Dal Lago and Ghyselen

easy to see that any such observation predicate can be captured as an APT automaton, asF determines

the branches that need to be followed. □

7 A CALCULUS OF EFFECTS AND HANDLERS

An algebraic operation in a language such as EPCF comes out uninterpreted: a computation produces
an e�ect tree, in which all algebraic operations are tree constructors, and no meaning is given to
operations in this tree. The notion of observation can indeed be seen as a way to at least identify trees
which should be considered the same, implicitly capturing equations between them. Observations,
however, attribute a static meaning to programs, and the programmer has no control over them.
There is, however, yet another way of attributing meaning to e�ects in which the programmer has
direct control on what happens. This can be seen as an abstraction of the notion of an exception
handler, but also of, e.g., the HASKELL’s monad construction. We are referring, of course, to the
so-called e�ect handlers [Kammar et al. 2013].
In this section, we present a calculus obtained by endowing EPCF with e�ect handlers, called

HEPCF, whose de�nition closely follows the literature on the subject [Hillerström et al. 2017;
Kammar et al. 2013]. This is necessary to even understand what doing model checking actually
means in presence of handlers, this way paving the way for positive and negative results about it,
which are deferred to the next section.

The language HEPCF di�ers from EPCF both at the level of terms and at the level of types. The
former are extended with the handle clause, in which a computation is evaluated in a protected
environment, in such a way as to be able to capture (and handle) the e�ects it raises. The latter
are enriched with annotations keeping track of which ones among the operations are visible. The
syntax of HEPCF is de�ned as follows:

(Types)),* ::= B | : |) →� *

(E�ects) � ::= ∅ | {f : B ⇝ :} ∪ �

(Values) + ,, ::= E | = | G | _G .� | fix 5 .+

(Computations) �, � ::= + , | f (+ ;G .�) | return(+) | let G = � in �

| with � handle � | case(+ ;�1, . . . ,�:)

(Handlers) � ::= {return(G) ↦→ �A } ∪ {f8 (G ; A) ↦→ �8 | 1 ≤ 8 ≤ =}

The arrow type) →� * refers to the set � of available algebraic operations the function at
hand can possibly perform once applied to an argument of type) . An handler consists of a return
clause return(G) ↦→ �A and of one clause f8 (G ; A) ↦→ �8 for each handled operation f8 in some
e�ect set �. The intuition behind such an handler is that it takes a computation using the e�ects
in {f8 | 1 ≤ 8 ≤ =}, and interprets each call to the algebraic operation f8 as the computation �8 in
which the continuation is passed as a variable A . The return computation �A is called when the
initial computation returns a value.

Selected rules of the type system are in Figure 7. A judgment attributing a type to a computation
� now has the shape Γ ⊢� � :) , meaning that� has the type) in the e�ect context �. As the reader
can see in the rule dealing with calls to algebraic operations, a computation of type Γ ⊢� � :)

can only give rise to the operations in �. As expected, a handler takes a computation � of some
type * that uses the e�ects in � and transforms this computation into a computation of type)
using the e�ects in �. This operation is very similar in principles to an application, that is why we
describe the type of an handler with an arrow type. In details, the type * �⇒�) means that all
the computations de�ned in the typed handler should use only the e�ect in �, and the handled
operations are exactly those in � . In such a context, a continuation for an algebraic operation is

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

On Model-Checking Higher-Order E�ectful Programs 87:19

Γ, G :) ⊢� � : *

Γ ⊢ _G.� :) →� *

Γ, 5 :) →� * ⊢ + :) →� *

Γ ⊢ fix 5 .+ :) →� *

Γ ⊢ + :) →� * Γ ⊢, :)

Γ ⊢� + , : *

(f : B ⇝ :) ∈ � Γ ⊢ + : B Γ, G : : ⊢� � :)

Γ ⊢� f (+ ;G .�) :)

Γ ⊢ + :)
Γ ⊢� return(+) :)

Γ ⊢� � : * Γ, G : * ⊢� � :)

Γ ⊢� let G = � in � :)

Γ ⊢ + : : (Γ ⊢� �8 :))1≤8≤:
Γ ⊢� case(+ ;�1, . . . ,�:) :)

Γ ⊢ � : * �⇒�) Γ ⊢� � : *

Γ ⊢� with � handle � :)

� = {f8 : B8 ⇝ :8 | 1 ≤ 8 ≤ =} Γ, G : * ⊢� �A :) Γ, G : B8 , A : : →�) ⊢� �8 :)

Γ ⊢ {return(G) ↦→ �A } ∪ {f8 (G ; A) ↦→ �8 | 1 ≤ 8 ≤ =} : * �⇒�)

Fig. 7. Static Semantics of HEPCF

� → �
with � handle � → with � handle �

� = {return(G) ↦→ �A } ∪ {f8 (G ; A) ↦→ �8 | 1 ≤ 8 ≤ =}

with � handle return(+) → �A [G := +]

� = {return(G) ↦→ �A } ∪ {f8 (G ; A) ↦→ �8 | 1 ≤ 8 ≤ =}

with � handle f8 (+ ;G .�) → �8 [G := + , A := (_G .with � handle �)]

Fig. 8. Dynamic Semantics for HEPCF

given as the variable A of type : →�) , meaning that this continuation is, as expected, of type
) with e�ects in �, and there are : di�erent continuations of this type, corresponding to the :
possible branches of this algebraic operation.
Finally, the dynamic semantics of HEPCF is described in Figure 8 and Figure 6. As expected,

handling a returned value consists in calling the return clause, and for the case of an algebraic
operation, it is important to note that the handler acts also on the continuation. As for the de�nition
of an e�ect tree, we can see that as before, a closed typed computation ⊢� � :) in normal form
is either an algebraic operation in � or return(+), thus we can de�ne e�ect trees similarly to
De�nition 6, with the signature � instead of Σ. Note that we can see the typing ⊢ � :) �⇒� * as
de�ning a tree operation from e�ect trees on � of type) to e�ect trees on � of type* . In practice, this
transformation takes a tree de�ned by ⊢� � :) and gives a tree de�ned by ⊢� with � handle� : * .
We will see in the next section that, unfortunately, the tree transformations that can be expressed
by handlers form a very large class, de�nitely too broad for our purposes.

8 MODEL CHECKING HANDLED EFFECTS: POSITIVE AND NEGATIVE RESULTS

In the previous section, we introduced e�ect handlers, a very powerful and elegant linguistic
construction thanks to which the interpretation of algebraic operations can somehow be delegated
to the programmer. In this section, we show that handlers are simply too expressive, meaning that
MSO model-checking of e�ect trees produced by terms of HEPCF is not decidable. We will also
show that when handlers have a restricted but non-trivial form, model checking becomes decidable.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

87:20 Dal Lago and Ghyselen

8.1 Undecidability Through the Halting Problem

The proof of undecidability is structured around the encoding of Plotkin’s PCF into HEPCF. The
encoding is somehow challenging, since PCF is taken in its full generality (thus including a type of
natural numbers), whileHEPCF only has �nite base types. Since the halting problem for PCF is well-
known to be undecidable, and termination can be written down as anMSO formula, undecidability
of the HOMC problem for HEPCF easily follows. Formally, we introduce standard PCF as the
following language:

Definition 12 (Plotkin’s PCF). The PCF language (in �ne-grained call-by-value) is de�ned by

the following grammar:

(Types)) ::= Nat |) → *

(Values) + ,, ::= 0 | succ(+) | G | _G .� | fix 5 .+

(Computations) �, � ::= + , | return(+) | let G = � in � | case(+ ; 0 ↦→ �; succ(G) ↦→ �)

This is a well-known language for which the halting problem is not decidable: encoding all
partial recursive functions is an easy exercise. We omit the de�nition of the static and dynamic
semantics, which are anyway natural and very standard.
In order to prove the undecidability of MSO-model checking for HEPCF we give a translation

from PCF to HEPCF. Again, note that the crucial di�erence between the two languages is that PCF
has access to an in�nite base type Nat for natural numbers, with a pattern matching constructor,
whereas in HEPCF there are handlers and algebraic e�ects, but all base types must be �nite. But
how could we encode the in�nite type of natural numbers using �nite types, e�ects and handlers?
In order to do so, we introduce the e�ect � = {f : Unit ⇝ 1}. For the sake of simplicity, we ignore
the parameter for this operation, of type Unit. Intuitively, we represent a natural number = by a
computation in which this operation f is called exactly = times, and then the computation halts by
returning the only inhabitant of the type Unit. But, because a natural number = is supposed to be
a value, we will use a thunk function 5= along the encoding, and each time we need to inspect the
value of a natural number =, we can call 5= () to produce the e�ect tree corresponding to the tree
representation of this number =.

Definition 13 (Translation from PCF to HEPCF). For any type) of HEPCF we de�ne the

zero of this type, denoted Z) as follows:

ZUnit = (); Z: = 1; Z)→�* = _G .return(Z*).

Intuitively, the zero of a type is just a particular closed value of this type chosen arbitrarily, in which no

e�ects are used. For the sake of clarity, we introduce a notation for several _-abstractions and several

applications in a row:

_5 , 6.� ≜ _5 .return(_6.�) + , * ≜ let G = + , in (G *)

for which we obtain, as expected, that (_5 , 6.�), * →+ � [5 :=,] [6 := *]. The translation ⟦·⟧
from PCF to �nitary HEPCF is then given by

⟦Nat⟧ = Unit→� Unit ⟦) → *⟧ = ⟦)⟧ →� ⟦*⟧

⟦0⟧ ≜ Z⟦Nat⟧ ⟦succ(+)⟧ ≜ _G.f (~.⟦+⟧())

⟦G⟧ ≜ G ⟦_G.�⟧ ≜ _G.⟦�⟧

⟦fix5 .+⟧ ≜ fix5 .⟦+⟧ ⟦+ , ⟧ ≜ ⟦+⟧ ⟦, ⟧

⟦return(+)⟧ ≜ return(⟦+⟧) ⟦let G = � in �⟧ ≜ (let G = ⟦�⟧ in ⟦�⟧)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

On Model-Checking Higher-Order E�ectful Programs 87:21

⟦case(+ ; 0 ↦→ �; succ(=) ↦→ �)⟧ ≜ let 0 = (with � (�, �) handle ⟦+⟧ ()) in (0 (_5 , 6.6 ()))

where � (�, �) is de�ned, when � and � have type) , by:

{ return(+) ↦→ return(_?.? ZUnit→�Unit (_G.⟦�⟧)),

f (A) ↦→ let = = return(_G .let ~ = A 1 (_5 , 6.let I = 5 () in Z⟦)⟧) in

return(ZUnit)) in

return(_?.? (_G.f (I.= ())) (_G.⟦�⟧)) }

Let us now give some hints about the translation. As expected, zero is mapped to the function
that returns () when called, while the successor becomes a call to the e�ect f . In order to do the
pattern matching for a natural number + given as a thunk function ⟦+⟧, we produce the e�ect
tree representing =, by calling ⟦+⟧(), and handling it. This handler produces a pair of thunked
computations. The �rst computation is just a copy of the initial computation ⟦+⟧(). This is rather
obvious for the return clause, and for the case of f , the value = corresponds intuitively to just
taking the �rst computation in A , thus a copy of the predecessor, and then the �rst computation is
f applied to this =, which gives the successor of the predecessor, i.e. a copy of the current number.
The second computation simulates the initial pattern matching. For the case of a zero, the second
computation is just � , and for the case of a successor (an operation f), the second computation
takes the copy of the predecessor given by =, and then returns the computation � that uses this
predecessor.
The proof that this translation is correct is inspired by the proof of the encoding of shallow

handlers using deep handlers, described in [Hillerström and Lindley 2018]. Intuitively, this is
because a shallow handler is a handler that only handles the root of an e�ect tree, which is exactly
what a pattern matching is supposed to do. First, we can show that this translation is well-typed:

Lemma 3. If Γ ⊢ + :) then ⟦Γ⟧ ⊢ ⟦+⟧ : ⟦)⟧ and if Γ ⊢ � :) then ⟦Γ⟧ ⊢� ⟦�⟧ : ⟦)⟧

Proof. The proof is direct except for the case construct, where we need to prove this interme-
diate result:
If Γ ⊢ � :) , Γ, = : Nat ⊢ � :) , ⟦Γ⟧ ⊢ ⟦�⟧ : ⟦)⟧ and ⟦Γ⟧, = : ⟦Nat⟧ ⊢ ⟦�⟧ : ⟦)⟧, then

⟦Γ⟧ ⊢ � : Unit�⇒� ((Unit→ Unit) → (Unit→ ⟦)⟧) → ⟦)⟧) → ⟦)⟧

With this type in mind, the proof that � (�, �) inhabits this type is straightforward, and we can
conclude that the translation for case is well-typed. □

We want to prove that the translation is a correct simulation. In order to do this, we need to
introduce formally an approximation of a term up to some administrative context, as in [Hillerström
and Lindley 2018]: in this translation we encode natural numbers as functions, and we sometimes
have a term that is overly complex because all the computation is hidden behind a _, but this
term will behave exactly like another simple term corresponding to the encoding of a natural
number. This is exactly what happens here; the variable = in the handler is essentially a copy of the
predecessor, but syntactically = is described as a complex computation.

Definition 14 (Administrative Contexts (See [Hillerström and Lindley 2018],Defini-

tion 6)). Evaluation contexts are de�ned by the following grammar:

E ::= [] | let G = E in � | with � handle E

They are precisely those contexts in which computation can take place. An evaluation context E for a

computation is called administrative, denoted adm(E) if and only if:

• For all values + , E[return(+)] →∗ return(+)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

87:22 Dal Lago and Ghyselen

• For all operations f , E[f (+ ;G .�)] →∗ f (+ ;G .�) with � →∗ E[�].

Remark that the composition of two administrative contexts is also an administrative context.

Definition 15 (Approximation up to Administrative Reductions (See [Hillerström and

Lindley 2018],Definition 7)). We de�ne ≥ for terms as the closure under any context of the following
rules:

� ≥ �
03<(E) � ≥ �

E[�] ≥ �

� → � � ≥ �
� ≥ �

Intuitively, we have � ≥ � when � could be reduced to � using strong rules of reduction (reducing

under any context) without changing normal forms (of the form return or f).

We can then prove the following lemma about the just introduced relation, showing that the
properties of administrative contexts are valid for approximations.

Lemma 4. If � ≥ � then:

• If � is return(+), then � →∗ return(,) with, ≥ +
• If � is f (+ ;~.�), then � →∗ f (, ;~.�) with � ≥ �

Proof. By induction on � ≥ � , it can be found in [Dal Lago and Ghyselen 2023]. □

We can then show that this approximation is a simulation.

Lemma 5. If Γ ⊢ � :) ,� → � and � ≥ ⟦�⟧, then there exists � such that �→+ � with � ≥ ⟦�⟧.

The details of this proof can again be found in [Dal Lago and Ghyselen 2023], but the result is
similar to the one obtained in [Hillerström and Lindley 2018], Theorem 9. From this simulation, we
obtain:

Theorem 4. For any term ⊢ � : Nat in PCF, there is a term of �nitary HEPCF �5 ≜ let 0 =

⟦�⟧ in (0 ()) such that ⊢� �5 : Unit and �) (�5) represents the normal form of � (if it exists,

otherwise �) (�5) is ⊥).

Proof. Suppose that ⊢ � : Nat has no normal form, then ⟦�⟧ has no normal form, and thus the
e�ect tree of �5 is ⊥. Otherwise, suppose that � →∗ return(+) with + a closed value of type Nat.
Then, ⟦�⟧ →∗ � with � ≥ ⟦return(+)⟧. In particular, � →∗ return(,) with, ≥ ⟦+⟧. Thus,
the e�ect tree of �5 is the same as ⟦+⟧. Because + is a closed value of type Nat, this e�ect tree is
the tree representation of the natural number + , which concludes the proof. □

As we did for EPCF, we can de�ne the MSO model-checking problem for HEPCF and easily
reach the following result through Theorem 4:

Corollary 2. The MSO model-checking problem for HEPCF is undecidable.

Indeed, given a PCF computation of type Nat, we can translate it into an HEPCF computation,
and ask if the e�ect tree of this HEPCF computation contains a ⊥, the latter happening precisely
when the initial term halts. Summing up, handlers in their full generality are simply too expressive
forMSO model-checking.

8.2 Undecidability for Restricted Output Types

The proof of Theorem 4 strongly depends on the fact that handlers can change the output type,
which is essential to encode pairs of computations and create copies of them. Careful readers might
wonder whether a �ne control over the output type is an essential ingredient of our undecidability
proof, and whether we could have a decidable MSO model-checking for constrained handlers

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

On Model-Checking Higher-Order E�ectful Programs 87:23

in which the output type if �xed, e.g., Unit�⇒� Unit. This is typically the kind of handler we
would obtain with an extension of the ECPS language [Matache 2018; Matache and Staton 2019]
with handlers. In this section, we give some hints about why the MSO model checking remains
undecidabile for such a language, while the complete development can be found in [Dal Lago and
Ghyselen 2023].
Let us consider a restriction of the HEPCF language in which all computations must have type

Unit, and no let expression is allowed. This may seem like a too severe constraint, but without
handlers this is actually the target language of a CPS translation [Matache and Staton 2019] whose
source language is EPCF. We use > to denote the unit type here, seen as the answer type for a CPS
translation. The important point is that the typing rule for handlers becomes:

� = {f8 : B8 ⇝ :8 | 1 ≤ 8 ≤ =} Γ ⊢� CA : > (Γ, G : B8 , A : : →� > ⊢� C8 : >)1≤8≤=
Γ ⊢ {return ↦→ CA } ∪ {f8 (G ; A) ↦→ C8 | 1 ≤ 8 ≤ =} : >�⇒� >

One can easily see that the proof strategy we employed in Section 8.1 is of no help here. We thus
have to follow a di�erent path, centered around an encoding of general handlers as restricted
handlers . As before, the main question is how to encode a conditional using a fold. The idea we
use here is to pick a larger alphabet of algebraic operations: for each operation f : B ⇝ : in Σ

we add a duplicate of this operation indicated as f3 : B ⇝ : , and called a marked operation. The
main idea consists in seeing handlers as e�ect tree transformers not altering the shape of trees,
something which even restricted handlers can do. More speci�cally, we de�ne two handlers:

(1) We �rst de�ne a handler �3 that takes a computation, and replace any non-marked operation
f by its marked counterpart f3 , leaving everything else unchanged.

(2) We then de�ne a second handler �A as follows:

�A ≜ {return ↦→ return; f (E ; A) ↦→ f (E ;~.with �3 handle (A ~))}

Essentially the handler �A leaves the �rst operation it encounters unchanged, while all the
subsequent operations are marked through the �3 handler.

Using �A on a tree C with only unmarked operations, we can somehow distinguish the �rst
operation from all the other ones: it is the only operation that is not marked after the application of
�A . Let us call the resulting tree �A (C). If we apply to �A (C) a handler that does nothing on marked
operations but that handles non-marked operations, we are implicitly de�ning a shallow handler
on the initial tree C , since we only handle the �rst operation and do nothing on the subsequent
ones. Following this idea, it is possible to encode a conditional for integers, as in Section 8.1, and
thus prove undecidability of the restricted language, showing that even without access to output
types, handlers remain too expressive for HOMC.

8.3 Recovering Decidability in a Calculus for Generic E�ects

Does the result in the last section mean that we have to get away with handlers if HOMC is
our concern? Essentially, it rather shows that general handlers, de�ne a transformation on e�ect
trees that is simply too expressive for HOMC. However, this does not mean that simpler tree
transformations cannot be expressed as HORS, and this section is devoted to introducing a class of
handlers whose underlying tree transformations are indeed amenable to HOMC. Intuitively, an
interpretation of an algebraic operation f : B ⇝ : could be just a function of type � → : , with
no access to the continuation. This is of course much less expressive than fully-�edged handlers,
but we will argue that what we obtain is not too restrictive. Formally, we can capture all this by a

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

87:24 Dal Lago and Ghyselen

Γ ⊢ � :) �⇒� * Γ ⊢� � :)

Γ ⊢� with � handle � : *

� = {f8 : B8 ⇝ :8 | 1 ≤ 8 ≤ =} Γ, G :) ⊢� �A : * (Γ, G : B8 , ⊢� �8 : :8)1≤8≤=
Γ ⊢ {return(G) ↦→ �A } ∪ {f8 (G) ↦→ �8 | 1 ≤ 8 ≤ =} :) �⇒� *

� → �
with � handle � → with � handle �

� = {return(G) ↦→ �A } ∪ {f8 (G) ↦→ �8 | 1 ≤ 8 ≤ =}

with � handle return(+) → �A [G := +]

� = {return(G) ↦→ �A } ∪ {f8 (G) ↦→ �8 | 1 ≤ 8 ≤ =}

with � handle f8 (+ ;~.�) → let ~ = �8 [G := +] in (with � handle �)

Fig. 9. Static and Dynamic Semantics of GEPCF

restriction of handlers, de�ned in the following language, called GEPCF (for Generic E�ects PCF):

(Types)),* ::= B |) →� * | :

(E�ects) � ::= ∅ | {f : B ⇝ :} ∪ �

(Values) + ,, ::= E | = | G | _G.� | fix 5 .+

(Computations) �, � ::= + , | f (+ ;G .�) | return(+) | let G = � in �

| with � handle � | case(+ ;�1, . . . ,�:)

(Handlers) � ::= {return(G) ↦→ �A } ∪ {f8 (G) ↦→ �8 | 1 ≤ 8 ≤ =}

Note that as expected, the handler for an algebraic operation does not have access to the continuation.
The static and dynamic semantics are in Figure 9.

Please observe that we can always simulate a GEPCF handler by a HEPCF handler:

return ↦→ �A ; f8 (G ; A) ↦→ let I = �8 in (A I) .

Thus, generic handlers are a speci�c case of standard handlers in which the handling of an operation
f8 always has the shape let I = �8 in (A I). Informally, if we look at it from the point of view
of tree transformations, this is exactly what we would obtain from a generic e�ect for the e�ect
tree monad, that is why we call this language GEPCF. Indeed, by de�nition [Plotkin and Power
2003], a generic e�ect of an algebraic operation f8 : �8 ⇝ :8 for the e�ect tree monad is given
by a Kleisli map in �8 → �) (:8). This is precisely the type of �8 in the restricted handler. The
reduction relation then implements the usual 1-1 correspondence between generic e�ects and
natural algebraic operations, which here corresponds to using tree composition: the e�ect tree
produced by let ~ = �8 [G := +] in (with � handle �) is the same as the e�ect tree produced by
�8 [G := +] except that all return(=) leaves are replaced by the tree of (with � handle � [~ := =]).

Let us now show that this language can be translated back into the _. -calculus, thus proving
MSO-decidability.1

Definition 16 (Translation from GEPCF to _-Y calculus). We de�ne the translation (·)★ on

types and terms. For the sake of conciseness, we slightly abuse notation about pairs in the left-hand

1An alternative proof could consist in showing that the tree transformation induced by this handler is a special case of a

tree transducer as in [Kobayashi et al. 2010]: a handler in GEPCF behaves as a unique case operator of [Kobayashi et al.

2010] repeated until a leaf is reached.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

On Model-Checking Higher-Order E�ectful Programs 87:25

side of an arrow type:

B★ ≜ > ; :★ ≜ >: → > ; () →� *)
★ ≜)★→ �★→ ¬*★→ > ;

∅★ ≜ (); � ∪ f : B ⇝ :★ ≜ (�★, > → ¬:★→ >).

We want to show that if Γ ⊢ + :) then Γ
★ ⊢ +★ :)★ and that if Γ ⊢� � :) then Γ

★ ⊢ �★ : �★ →
()★→ >) → > . Informally, we go via a CPS-translation in which a handler continuation, of type �★

is carried around, giving an interpretation to all algebraic operations in �. We take the _. -calculus

with a signature Σ including at least all the constants values of EPCF. Formally, the translation acts on

computations and values as follows, where � stands for {return(G) ↦→ �A ;f8 (G) ↦→ �8 | 1 ≤ 8 ≤ =}:

E★ ≜ E =★ ≜ _(G1, . . . , G:).G=

G★ ≜ G (_G .�)★ ≜ _G .�★

(fix G .+)★ ≜ . (_G .+★) (+ ,)★ ≜ +★,★

(return(+))★ ≜ _(ℎ̃, 2).2 +★ (f8 (+ ;G .�))
★ ≜ _(ℎ̃, 2).ℎ8 +

★ (_G.�★ ℎ̃ 2)

(let G = � in �)★ ≜ _(ℎ̃, 2).�★ ℎ̃ (_G .�★ ℎ̃ 2)

(case(+ ;�1, . . . ,�:))
★ ≜ _(ℎ̃, 2).+★ (�★

1 ℎ̃ 2) · · · (�
★

: ℎ̃ 2)

(with � handle �)★ ≜ _(ℎ̃, 2).�★ (_(G, A).�★

1 ℎ̃ A) · · · (_(G, A).�
★

= ℎ̃ A) (_G .�
★

A ℎ̃ 2).

Lemma 6. If Γ ⊢ + :) then Γ
★ ⊢ +★ :)★, while if Γ ⊢� � :) then Γ

★ ⊢ �★ : �★→ ¬¬)★

The proof is straightforward.

Lemma 7. If Γ ⊢� � :) and � → � then for any well-typed continuations (ℎ̃, 2), we have

�★

ℎ̃,2
→+ � =03< �★

ℎ̃,2
, where =03< is the least congruence relation including all pairs in the form

((_(ℎ̃, 2).�) ℎ̃ 2,�).

Proof. The proof goes by induction on the derivation of � → � . Some cases are equivalent to
those of the usual CPS translation so we can safely ignore them. Similarly to Lemma 2, we have
to take care of some administrative reduction steps. The interesting cases are those dealing with
handlers. The contextual case is straightforward since we can reduce the head of the _Y-term. The
most interesting case is the one about the handling of an algebraic operation. For this case, we have
that:

(with � handle f8 (+ ;~.�))
★ ℎ̃ 2 →+ (�★

8) [G := +★] ℎ̃ (_~.�★ H̃ C),

where H̃ and C denotes continuations such that

(with � handle �)★ ≜ _(ℎ̃, 2).�★ H̃ C.

On the other hand, we have that:

(let ~ = �8 [G := +] in (with � handle �))★ ℎ̃ 2 →03< �★

8 [G := +] ℎ̃ (_~.(_(ℎ̃, 2).�★H̃ C) ℎ̃ 2),

and those two terms are administratively equivalent. □

We can now de�ne a canonical continuation handler for a given set of e�ects.

Definition 17. Consider a set � = {f8 : B8 ⇝ :8 } of e�ects. We pose Σ� = {f8 : :8 + 1} a signature
for terms of the _Y-calculus. We de�ne the identity continuation handler for � as the _Y-term of type

�★:

(ℎ̃�)8 ≜ _(G, 5).f8 G (5 (_G1, . . . , G: .G1)) . . . (5 (_G1, . . . , G: .G:))

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

87:26 Dal Lago and Ghyselen

In particular, remark that (f8 (+ ;G .�))
★

ℎ̃� ,2
becomes:

(f8 (+ ;G .�))
★

ℎ̃� ,2
→ f8 +

★ (�★[G := 1★] ℎ̃� 2) . . . (�
★[G := :★]ℎ̃� 2)

which corresponds exactly to the e�ect tree of f8 (+ ;G .�).

We are now ready to prove the main result of this section:

Theorem 5. For any ⊢� � :) , for any continuation ⊢ 2 :)★→ > , we have that

�) (�) [return(+) ← �) (2 +★)] = �) (+★ ℎ̃� 2)

Proof. We can proceed by induction on the e�ect tree of �:

• If � can be reduced inde�nitely, then by simulation, �★ ℎ̃� 2 can be reduced inde�nitely too.

• If � →∗ return(+). Then �★ ℎ̃� 2 →
∗ 2 +★ by de�nition of return(+)★.

• If � →∗ f (+ ;G .�). Then �★ ℎ̃� 2 →
∗ f8 +

★ (�★[G := 1★] ℎ̃� 2) · · · (�
★[G := :★]ℎ̃� 2). And

we can conclude by induction hypothesis.

□

In particular, if we have) as a base type and a continuation that is the encoding of the identity,
we can recover exactly the initial e�ect tree. Moreover, we can naturally de�ne the MSO model-
checking problem for GEPCF, as we did for EPCF and HEPCF, and obtain that:

Corollary 3. The MSO model-checking prolem for GEPCF is decidable.

Please note that, similarly to what happens in Corollary 1, the continuation 2 can be chosen
arbitrarily.

9 RELATED WORK

E�ectful Higher-Order Programs. This is de�nitely not the �rst paper concerned with higher-order
e�ectful programs. The denotational semantics of calculi having this nature has been studied since
Moggi’s seminal work on monads [Moggi 1988], implicitly providing notions of equivalence and
re�nement. All this has been given a more operational �avor in Plotkin and Power’s account on
adequacy for algebraic e�ects [Plotkin and Power 2003], from which the operational semantics
presented in this paper is greatly inspired. Logics for algebraic e�ects have been introduced by
Pretnar and Plotkin [Plotkin and Pretnar 2008], by Matache and Staton [Matache and Staton
2019], and by Simpson and Voorneveld [Simpson and Voorneveld 2019]. The latter has certainly
been another major source of inspiration although, as explicitly stated by the authors2, automatic
veri�cation techniques were considered simply as out of scope. In fact, we are not aware of any
attempt to study the decidability of the aforementioned theories.

Veri�cation of In�nite State Higher-Order Program with Control Operators and E�ects. A recent line
of work has been concerned with the temporal veri�cation of in�nite-state higher-order programs
with control operators using type and e�ect systems. For example, Gordon [Gordon 2020] de�nes
a framework for sequential e�ects with tagged control operators akin to abort and call/cc,
capturing temporal safety properties. Similarly, [Sekiyama and Unno 2023] describes a veri�cation
methodology for general temporal properties in presence of the control operators shift0 and
reset0, while [Song et al. 2022] tackles the problem of verifying general e�ect handlers against

2In [Simpson and Voorneveld 2019], Section 10, Paragraph 8: “We view the in�nitary propositional logic of this paper

as providing a low-level language, into which practical high-level �nitary logics for expressing program properties can

potentially be compiled. [...] We view the development of such high-level logics and their compositional reasoning principles,

aimed at practical speci�cation and veri�cation, as a particularly promising topic for future research.”

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

On Model-Checking Higher-Order E�ectful Programs 87:27

speci�cations in a logic more expressive than classical LTL. However, we are not aware of any
work dealing with the problem of verifying general e�ect handlers against MSO formulas, nor of
any undecidability results for the problem.

Higher-Order Model Checking. Model checking of higher-order programs has been an active
topic of investigation in the last twenty years, with many positive results, from the pioneering and
partial results by Knapik et al. [Knapik et al. 2001, 2002] to Ong’s already mentioned breakthrough
result [Ong 2006], followed by Kobayashi and co-authors’ work on model checking as (intersection)
type checking [Kobayashi and Ong 2009]. Noticeably, some of these works go in the direction
of extending the aforementioned decidability results to higher-order calculi endowed with some
speci�c form of e�ect, like probabilistic choice [Kobayashi et al. 2020], some form of resource
usage [Kobayashi 2009] or exception-handling [Sato et al. 2013]. Outcomes are not always been on
the positive side, as undecidability of the model checking problem for probabilistic variations on
HORSs shows. Again, we are not aware of any study aimed at giving general criteria for decidability.

E�ect Handlers. E�ect handlers are a linguistic feature allowing to give computational meaning
to algebraic operations through handlers, i.e. routines speci�cally designed for the handling of
these e�ects, which in this way can be managed internally by the program itself rather than by the
environment. Given their elegance and naturalness in generalizing standard language constructions
like the try with operator for exceptions, handlers have been largely studied both theoretically
and concretely [Bauer 2019; Biernacki et al. 2019; Hillerström and Lindley 2018; Hillerström et al.
2017; Kammar et al. 2013; Plotkin and Pretnar 2009; Sekiyama et al. 2020]. We are not aware of
any study about handlers in a �nitary setting, and even less about questions of decidability with
regards to higher-order model checking.

10 CONCLUSION

This paper tackles, for the �rst time in a general way, the problem of evaluating the intrinsic
di�culty of the higher-order model checking problem when applied to programs that exhibit
e�ects, possibly managed through handlers. The results obtained are in two styles: while the
problem of capturing algebraic operations in calculi amenable to HOMC does not pose problems
and indeed can be solved in its generality, observing the e�ects produced by such operations and
handling them must be done with great care: we observe that in general this leads to undecidability,
but that in both cases, criteria can be de�ned allowing to keep the problem decidable. This consists,
respectively, in observing the e�ects so that this observation can be expressed in MSO and in a
restricted class of handlers su�cient for the modeling of the so-called generic e�ects.
There are aspects that this paper deliberately overlooks, but which certainly deserve further

study. First of all, it should be mentioned that the impact of e�ects on (known) complexity results
about HOMC is not studied in detail here, but that the introduced translations (in particular those
in Section 5 and Section 8) could perhaps be implemented more e�ciently, following works on
order optimization [Nakamura et al. 2020]. It should also be said that the possibility of introducing
logics more powerful thanMSO this way capturing quantitative observations without possibly
falling back into the known cases of undecidability (e.g., in the case of probabilistic e�ects) is a
very interesting research direction that the authors intend to investigate in the immediate future.

DATA AVAILABILITY STATEMENT

The long version of this paper can be found on arXiv:2308.16542 [cs.LO] [Dal Lago and Ghyselen
2023].

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

https://arxiv.org/abs/2308.16542

87:28 Dal Lago and Ghyselen

REFERENCES

Andrej Bauer. 2019. What is Algebraic About Algebraic E�ects and Handlers? arXiv:1807.05923 [cs.LO]

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2019. Abstracting Algebraic E�ects. Proceedings of

the ACM for Programming Languages 3, (POPL) (2019), 6:1–6:28.

Edwin Brady. 2013. Idris, a general-purpose dependently typed programming language: Design and implementation. Journal

of Functional Programming 23, 5 (2013), 552–593.

Christopher Broadbent, Arnaud Carayol, Luke Ong, and Olivier Serre. 2010. Recursion Schemes and Logical Re�ection. In

Proc. of LICS 2010. IEEE, 120–129.

Christopher Broadbent and Naoki Kobayashi. 2013. Saturation-Based Model Checking of Higher-Order Recursion Schemes.

In Proc. of CSL 2013 (LIPIcs, Vol. 23). 129–148.

Arnaud Carayol and Olivier Serre. 2012. Collapsible Pushdown Automata and Labeled Recursion Schemes: Equivalence,

Safety and E�ective Selection. In Proc. of LICS 2012. IEEE, 165–174.

Pierre Clairambault and Andrzej S. Murawski. 2013. Böhm Trees as Higher-Order Recursive Schemes. In Proc. of FSTTCS

2013 (LIPIcs, Vol. 24). 91–102.

Edmund M. Clarke. 1997. Model checking. In Proc. of FSTTCS 1997. Springer, 54–56.

Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, Roderick Bloem, et al. 2018. Handbook of model checking. Vol. 10.

Springer.

Bruno Courcelle. 1995. The monadic second-order logic of graphs IX: Machines and their behaviours. Theoretical Computer

Science 151, 1 (1995), 125–162.

Ugo Dal Lago, Francesco Gavazzo, and Paul Levy. 2017. E�ectful applicative bisimilarity: Monads, relators, and Howe’s

method. In Proc. of LICS 2017. IEEE, 1–12.

Ugo Dal Lago and Alexis Ghyselen. 2023. On Model-Checking Higher-Order E�ectful Programs (Long Version).

arXiv:2308.16542 [cs.LO]

Rowan Davies and Frank Pfenning. 2000. Intersection Types and Computational E�ects. In Proc. of ICFP 2000. ACM, 198–208.

Philippe de Groote. 1994. A CPS-translation of the _`-calculus. In Proc. of CAAP 1994. Springer, 85–99.

E. Allen Emerson and Charanjit S. Jutla. 1991. Tree automata, mu-calculus and determinacy. In Proc. of FOCS 1991. IEEE,

368–377.

Tim Freeman and Frank Pfenning. 1991. Re�nement Types for ML. In Proc. of PLDI 1991. ACM, 268–277.

Colin S. Gordon. 2020. Lifting Sequential E�ects to Control Operators. In Proc. of ECOOP 2020 (LIPIcs, Vol. 166). 23:1–23:30.

Erich Grädel, Wolfgang Thomas, and Thomas Wilke. 2003. Automata, logics, and in�nite games: a guide to current research.

LNCS, Vol. 2500. Springer.

Matthew Hague, Andrzej Murawski, Luke Ong, and Olivier Serre. 2008. Collapsible Pushdown Automata and Recursion

Schemes. In Proc. of LICS 2008. IEEE, 452–461.

Daniel Hillerström and Sam Lindley. 2018. Shallow E�ect Handlers. In Proc. of ESOP 2018. Springer, 415–435.

Daniel Hillerström, Sam Lindley, Robert Atkey, and K. C. Sivaramakrishnan. 2017. Continuation Passing Style for E�ect

Handlers. In Proc. of FSCD 2017 (LIPIcs, Vol. 84). 18:1–18:19.

John Hughes, Lars Pareto, and Amr Sabry. 1996. Proving the correctness of reactive systems using sized types. In Proc. of

POPL 1996. ACM, 410–423.

Patricia Johann, Alex Simpson, and Janis Voigtländer. 2010. A Generic Operational Metatheory for Algebraic E�ects. In

Proc. of LICS 2010. IEEE, 209–218.

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the ground

up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28 (2018),

e20.

Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in Action. In Proc. of ICFP 2013. ACM, 145–158.

James King. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (1976), 385–394.

Teodor Knapik, Damian Niwiński, and Paweł Urzyczyn. 2001. Deciding Monadic Theories of Hyperalgebraic Trees. In Proc.

of TLCA 2001. Springer, 253–267.

Teodor Knapik, Damian Niwiński, and Paweł Urzyczyn. 2002. Higher-Order Pushdown Trees Are Easy. In Proc. of FoSSaCS

2002. Springer, 205–222.

Naoki Kobayashi. 2009. Types and higher-order recursion schemes for veri�cation of higher-order programs. In Proc. of

POPL 2019. ACM, 416–428.

Naoki Kobayashi. 2011. A Practical Linear Time Algorithm for Trivial Automata Model Checking of Higher-Order Recursion

Schemes. In Proc. of FoSSaCS 2011. Springer, 260–274.

Naoki Kobayashi, Ugo Dal Lago, and Charles Grellois. 2020. On the termination problem for probabilistic higher-order

recursive programs. Logical Methods in Computer Science 16, 4 (2020).

Naoki Kobayashi and Atsushi Igarashi. 2013. Model-Checking Higher-Order Programs with Recursive Types. In Proc. of

ESOP 2013. Springer, 431–450.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

https://arxiv.org/abs/1807.05923
https://arxiv.org/abs/2308.16542

On Model-Checking Higher-Order E�ectful Programs 87:29

Naoki Kobayashi and C-H Luke Ong. 2009. A type system equivalent to the modal mu-calculus model checking of

higher-order recursion schemes. In Proc. of LICS 2009. IEEE, 179–188.

Naoki Kobayashi, Naoshi Tabuchi, and Hiroshi Unno. 2010. Higher-order multi-parameter tree transducers and recursion

schemes for program veri�cation. In Proc. of POPL 2010. ACM, 495–508.

Xavier Leroy. 2009. Formal Veri�cation of a Realistic Compiler. Commun. ACM 52, 7 (jul 2009), 107–115.

Cristina Matache. 2018. Program equivalence for algebraic e�ects via modalities.. In Master’s thesis. University of Oxford,

Department of Computer Science.

Cristina Matache and Sam Staton. 2019. A Sound and Complete Logic for Algebraic E�ects. In Proc. of FoSSaCS 2019. Springer,

382–399.

Eugenio Moggi. 1988. Computational Lambda-calculus and Monads. University of Edinburgh, Department of Computer

Science.

Yoshiki Nakamura, Kazuyuki Asada, Naoki Kobayashi, Ryoma Sin’ya, and Takeshi Tsukada. 2020. On Average-Case Hardness

of Higher-Order Model Checking. In Proc. of FSCD 2020 (LIPIcs, Vol. 167). 21:1–21:23.

Robin Neatherway, Steven Ramsay, and Luke Ong. 2012. A Traversal-Based Algorithm for Higher-Order Model Checking.

In Proc. of ICFP 2012. ACM, 353–364.

Luke Ong. 2006. On model-checking trees generated by higher-order recursion schemes. In Proc. of LICS 2006. IEEE, 81–90.

Luke Ong. 2015. Higher-order model checking: An overview. In Proc. of LICS 2015. IEEE, 1–15.

Gordon Plotkin. 1975. Call-by-name, call-by-value and the _-calculus. Theoretical Computer Science 1, 2 (1975), 125–159.

Gordon Plotkin and John Power. 2003. Algebraic Operations and Generic E�ects. Applied Categorical Structures 11 (2003),

69–94. https://doi.org/10.1023/A:1023064908962.

Gordon Plotkin and Matija Pretnar. 2008. A logic for algebraic e�ects. In Proc. of LICS 2008. IEEE, 118–129.

Gordon Plotkin and Matija Pretnar. 2009. Handlers of Algebraic E�ects. In Proc. of ESOP 2009. Springer, 80–94.

Matija Pretnar. 2015. An Introduction to Algebraic E�ects and Handlers. Invited tutorial paper. In Proc. of MFPS 2015

(Electronic Notes in Theoretical Computer Science, Vol. 319). Elsevier, 19–35.

Steven Ramsay, Robin Neatherway, and Luke Ong. 2014. A Type-Directed Abstraction Re�nement Approach to Higher-Order

Model Checking. In Proc. of POPL 2014. ACM, 61–72.

Sylvain Salvati and Igor Walukiewicz. 2012. Recursive Schemes, Krivine Machines, and Collapsible Pushdown Automata. In

Proc. of RP 2012. Springer, 6–20.

Sylvain Salvati and Igor Walukiewicz. 2014. Krivine machines and higher-order schemes. Information and Computation 239

(2014), 340–355.

Ryosuke Sato, Hiroshi Unno, and Naoki Kobayashi. 2013. Towards a Scalable Software Model Checker for Higher-Order

Programs. In Proc. of PEPM 2013. ACM, 53–62.

Taro Sekiyama, Takeshi Tsukada, and Atsushi Igarashi. 2020. Signature Restriction for Polymorphic Algebraic E�ects.

Proceedings of the ACM on Programming Languages 4, (ICFP) (2020), 117:1–117:30.

Taro Sekiyama and Hiroshi Unno. 2023. Temporal Veri�cation with Answer-E�ect Modi�cation: Dependent Temporal

Type-and-E�ect System with Delimited Continuations. Proceedings of the ACM on Programming Languages 7, (POPL)

(2023), 2079–2110.

Alex Simpson and Niels Voorneveld. 2019. Behavioural Equivalence via Modalities for Algebraic E�ects. ACM Trans.

Program. Lang. Syst. 42 (2019), 4:1–4:45.

Yahui Song, Darius Foo, and Wei-Ngan Chin. 2022. Automated Temporal Veri�cation For Algebraic E�ects. In Proc. of

APLAS 2022. Springer, 88–109.

Sam Tobin-Hochstadt and David Van Horn. 2012. Higher-order symbolic execution via contracts. In Proc. of OOPSLA 2012.

ACM, 537–554.

Takeshi Tsukada and Naoki Kobayashi. 2014. Complexity of Model-Checking Call-by-Value Programs. In Proc. of FoSSaCS

2014. Springer, 180–194.

Igor Walukiewicz. 1993. On completeness of the mu-calculus. In Proc. of LICS 1993. IEEE, 136–146.

Igor Walukiewicz. 2016. Automata Theory and Higher-Order Model-Checking. ACM SIGLOG News 3, 4 (2016), 13–31.

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 87. Publication date: January 2024.

	Abstract
	1 Introduction
	2 Higher-Order Effectful Programs, and how to Model-Check Them
	3 Preliminaries about Higher-Order Model Checking
	3.1 Infinite Trees Generated by Y-Terms
	3.2 Expressing Properties As Alternating Parity Tree Automata

	4 Higher-Order Programs with Effects
	5 From EPCF to the Y-Calculus
	6 Specifications Through Observations
	7 A Calculus of Effects and Handlers
	8 Model Checking Handled Effects: Positive and Negative Results
	8.1 Undecidability Through the Halting Problem
	8.2 Undecidability for Restricted Output Types
	8.3 Recovering Decidability in a Calculus for Generic Effects

	9 Related Work
	10 Conclusion
	References

